Huadian Technology ›› 2021, Vol. 43 ›› Issue (10): 11-21.doi: 10.3969/j.issn.1674-1951.2021.10.002
Previous Articles Next Articles
ZHAO Guotao(), QIAN Guoming(
), WANG Sheng(
), DING Quan(
), ZHU Haidong(
)
Received:
2021-09-09
Revised:
2021-09-22
Published:
2021-10-25
CLC Number:
ZHAO Guotao, QIAN Guoming, WANG Sheng, DING Quan, ZHU Haidong. Analysis on solution for green and low-carbon transformation of thermal power enterprises to achieve carbon peak and carbon neutrality[J]. Huadian Technology, 2021, 43(10): 11-21.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.10.002
[1] | 胡鞍钢. 中国实现 2030 年前碳达峰目标及主要途径[J]. 北京工业大学学报(社会科学版), 2021, 21(3): 1-15. |
HU Angang. China's goal of achieving carbon peak by 2030 and its main approaches[J]. Journal of Beijing University of Technology(Social Sciences Edition), 2021, 21(3): 1-15. | |
[2] | 李政, 陈思源, 董文娟, 等. 碳约束条件下电力行业低碳转型路径研究[J/OL]. 中国电机工程学报, 2021.(2021-05-11)[2021-08-12]. https://doi.org/10.13334/j.0258-8013.pcsee.210671. |
LI Zheng, CHEN Siyuan, DONG Wenjuan, et al. Low carbon transition pathway of power sector under carbon emission constraints[J/OL]. Proceedings of the CSEE, 2021.(2021-05-11)[2021-08-12]. https://doi.org/10.13334/j.0258-8013.pcsee.210671.210671. | |
[3] | 蒋长流, 江成涛. 基于低碳转型的环境管理职能变革研究[J]. 环境与可持续发展, 2019(5): 109-113. |
JIANG Changliu, JIANG Chengtao. Study on change of environmental management function based on low carbon transition[J]. Environment and Sustainable Development, 2019(5): 109-113. | |
[4] | 刁心薇, 曾珍香, 孙丞. 混合碳政策下制造商低碳转型的技术选择策略研究[J]. 控制与决策, 2021, 36(7): 1763-1770. |
DIAO Xinwei, ZENG Zhenxiang, SUN Cheng. Research on technology selection in low carbon transition of the manufacturer under mixed carbon policy[J]. Control and Decision, 2021, 36(7): 1763-1770. | |
[5] | 杨双萍. 中国高碳产业低碳转型动力研究[D]. 镇江:江苏大学, 2019. |
[6] | 张小丽, 刘俊伶, 王克, 等. 中国电力部门中长期低碳发展路径研究[J]. 中国人口·资源与环境, 2018, 28(4): 68-77. |
ZHANG Xiaoli, LIU Junling, WANG Ke. et al. Study on medium and long-term low-carbon development pathway of China's power sector[J]. China Population,Resources and Environment, 2018, 28(4): 68-77. | |
[7] | 张运洲, 张宁, 代红才, 等. 中国电力系统低碳发展分析模型构建与转型路径比较[J]. 中国电力, 2021, 54(3): 1-11. |
ZHANG Yunzhou, ZHANG Ning, DAI Hongcai, et al. Model construction and pathways of low-carbon transition of China's power system[J]. Electric Power, 2021, 54(3): 1-11. | |
[8] | 李政, 陈思源, 董文娟, 等. 现实可行且成本可负担的中国电力低碳转型路径[J]. 洁净煤技术, 2021, 27(2): 1-7. |
LI Zheng, CHEN Siyuan, DONG Wenjuan, et al. Feasible and affordable decarbonization pathways of China's power sector[J]. Clean Coal Technology, 2021, 27(2): 1-7. | |
[9] | 张文华, 闫庆友, 何钢, 等. 气候变化约束下中国电力系统低碳转型路径及策略[J]. 气候变化研究进展, 2021, 17(1): 18-26. |
ZHANG Wen Hua, YAN Qing You, HE Gang, et al. The pathway and strategy of China's power system low-carbon transition under the constraints of climate change[J]. Climate Change Research, 2021, 17(1): 18-26. | |
[10] | 邓旭, 谢俊, 滕飞. 何谓“碳中和”?[J]. 气候变化研究进展, 2021, 17(1): 107-113. |
DENG Xu, XIE Jun, TENG Fei. What is carbon neutrality?[J]. Climate Change Research, 2021, 17(1): 107-113. | |
[11] | 清华大学中国碳市场研究中心, 北京中创碳投科技有限公司. 地方政府参与全国碳市场工作手册.[R]2019. |
[12] | 张九天, 张璐. 面向碳中和目标的碳捕集、利用与封存发展初步探讨[J]. 热力发电, 2021, 50(1): 1-6. |
ZHANG Jiutian, ZHANG Lu. Preliminary discussion on development of carbon capture, utilization and storage for carbon neutralization[J]. Thermal Power Generation, 2021, 50(1): 1-6. | |
[13] | 肖云鹏, 王锡凡, 王秀丽, 等. 面向高比例可再生能源的电力市场研究综述[J]. 中国电机工程学报, 2018, 38(3): 663-674. |
XIAO Yunpeng, WANG Xifan, WANG Xiuli, et al. Review on electricity market towards high proportion of renewable energy[J]. Proceedings of the CSEE, 2018, 38(3): 663-674. | |
[14] | 赵国涛, 丁泉, 付军华, 等. 基于多市场联动的区域能源系统低碳路径研究[J]. 电力建设, 2021, 42(3): 19-26. |
ZHAO Guotao, DING Quan, FU Junhua, et al. Research on the low-carbon implementation path of regional energy system relying on the linkage mechanism of multi-markets[J]. Electric Power Construction, 2021, 42(3): 19-26. | |
[15] | 王宣元, 马莉, 曲昊源. 美国得克萨斯州风电消纳的市场运行机制及启示[J]. 中国电力, 2017, 50(7): 10-27. |
WANG Xuanyuan, MA Li, QU Haoyuan. Market mechanisms for wind generation in ERCOT market and the inspiration for China[J]. Electric Power, 2017, 50(7): 10-27. | |
[16] | 刘志清, 王春义, 王飞, 等. 储能在电力系统源网荷三侧应用及相关政策综述[J]. 山东电力技术, 2020, 47(7): 1-21. |
LIU Zhiqing, WANG Chunyi, WANG Fei, et al. Source-grid-load application of energy storage in electric power system and related policy overview[J]. Shandong Electric Power, 2020, 47(7): 1-21. | |
[17] | 杨晟, 孙跃, 龚钢军, 等. 基于能源区块链的综合能源服务研究[J]. 华电技术, 2020, 42(8): 11-16. |
YANG Sheng, SUN Yue, GONG Gangjun, et al. Research on integrated energy services based on energy blockchain[J]. Huadian Technology, 2020, 42(8): 11-16. | |
[18] | 马宝忠, 杨蓬, 孙聪, 等. 基于虚拟现实技术的变电站交直流电源仿真设计[J]. 科学技术与工程, 2021, 21(2): 591-596. |
MA Baozhong, YANG Peng, SUN Cong, et al. Simulation design of AC and DC power supply in substation based on virtual reality technology[J]. Science Technology and Engineering, 2021, 21(2): 591-596. | |
[19] | 孙文文, 何国庆, 刘纯, 等. 物联网背景下应用于光伏发电的边缘计算设备关键技术研究及应用[J]. 电力自动化设备, 2021, 41(7): 38-43. |
SUN Wenwen, HE Guoqing, LIU Chun, et al. Research and application of key technologies for edge computing equipment used in photovoltaic power generation under background of IoT[J]. Electric Power Automation Equipment, 2021, 41(7): 38-43. | |
[20] | 董世丹傑, 杨超, 姜燕, 等. 基于物联网的光伏并网配电网自愈控制方法研究[J]. 电气自动化, 2021, 43(1): 48-50. |
DONG Shidanjie, YANG Chao, JIANG Yan, et al. Research on self-healing control method for photovoltaic grid-connected distribution networks based on the Internet of Thing[J]. Electrical Automation, 2021, 43(1): 48-50. | |
[21] | 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171-190. |
ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171-190. | |
[22] | 苗彤宇. 电、煤矛盾对 B 电厂生产成本的影响及对策研究[D]. 长春:吉林大学, 2020. |
[23] | 刘亚东, 陈思, 丛子涵, 等. 电力装备行业数字孪生关键技术与应用展望[J]. 高电压技术, 2021, 47(5): 1539-1554. |
LIU Yadong, CHEN Si, CONG Zihan, et al. Key technology and application prospect of digital twin in power equipment industry[J]. High Voltage Engineering, 2021, 47(5): 1539-1554. | |
[24] | 龚仁喜, 顾佳宇. 负荷虚拟同步机惯性与阻尼自适应控制策略[J/OL]. 电测与仪表: 1-7(2021-01-21)[2021-08-08]. https://kns.cnki.net/kcms/detail/23.1202.TH.20210120.1910.014.html. |
GONG Renxi, GU Jiayu. Adaptive control strategy of inertia and damping for load virtual synchronous machine[J/OL]. Electrical Measurement & Instrumentation: 1-7(2021-01-21)[2021-08-08]. https://kns.cnki.net/kcms/detail/23.1202.TH.20210120.1910.014.html. | |
[25] | 武倩羽, 周莹坤, 李晨阳, 等. 新能源同步机并网系统惯性特性的理论和实验研究[J]. 大电机技术, 2019(6): 41-46. |
WU Qianyu, ZHOU Yingkun, LI Chenyang, et al. Theoretical and experimental study of inertial characteristics for the synchronous motor-generator pair[J]. Large Electric Machine and Hydraulic Turbine, 2019(6): 41-46. | |
[26] | 于洋. 基于虚拟同步发电机的微电网控制策略研究[D]. 郑州:郑州大学, 2020. |
[27] | 李嘉媚, 艾芊. 考虑调峰辅助服务的虚拟电厂运营模式[J]. 电力自动化设备, 2021, 41(6): 1-13. |
LI Jiamei, AI Qian. Operation mode of virtual power plant considering peak regulation auxiliary service[J]. Electric Power Automation Equipment, 2021, 41(6): 1-13. | |
[28] | 赵晋泉, 杨余华, 孙中昊, 等. 考虑虚拟电厂参与的深度调峰市场机制与出清模型[J]. 全球能源互联网, 2020, 3(5): 469-475. |
ZHAO Jinquan, YANG Yuhua, SUN Zhonghao, et al. Deep peak regulation market mechanism and clearing model considering participation of virtual power plants[J]. Journal of Global Energy Interconnection, 2020, 3(5): 469-475. | |
[29] | 李旭东. 含高比例非常规机组的多元电源联合调峰策略研究[D]. 北京:华北电力大学, 2019. |
[30] | 肖春梅. 电储能提升火电机组调频性能研究[J]. 热力发电, 2021, 50(6): 98-105. |
XIAO Chunmei. Research on using electric energy storage to improve frequency regulation performance of thermal power units[J]. Thermal Power Generation, 2021, 50(6): 98-105. | |
[31] | 谢惠藩, 王超, 刘湃泓, 等. 南方电网储能联合火电调频技术应用[J]. 电力系统自动化, 2021, 45(4): 172-179. |
XIE Huifan, WANG Chao, LIU Paihong, et al. Application of joint frequency regulation technology of energy storage and thermal power in China southern power grid[J]. Automation of Electric Power System, 2021, 45(4): 172-179. | |
[32] | 王兴兴, 孙建桥, 陈明. 储能火电联合调频系统设计与研究[J]. 华电技术, 2020, 42(4): 72-76. |
WANG Xingxing, SUN Jianqiao, CHEN Ming. Design and research on energy storage and thermal power combined frequency modulation systems[J]. Huadian Technology, 2020, 42(4): 72-76. | |
[33] | 王金星, 张少强, 张瀚文, 等. 燃煤电厂调峰调频储能技术的研究进展[J]. 华电技术, 2020, 42(4): 64-71. |
WANG Jinxing, ZHANG Shaoqiang, ZHANG Hanwen, et al. Progress on the peak load regulation,frequency regulation and energy storage technologies for coal-fired power plants[J]. Huadian Technology, 2020, 42(4): 64-71. | |
[34] | 罗定. 高比例可再生能源与储能协调运行背景下的随机生产模拟[D]. 北京:华北电力大学, 2019. |
[35] | 贾伟青, 陈俊清, 赵耀, 等. 储能电池实现风光储微电网灵活安全运行的仿真研究[J]. 太阳能, 2020(12): 33-38. |
JIA Weiqing, CHEN Junqing, ZHAO Yao, et al. Simulation of using storage energy to realize flexible and safe operation of wind-PV-storage energy microgrid[J]. Solar Energy, 2020(12): 33-38. | |
[36] | 黄大为, 齐德卿, 于娜, 等. 利用制氢系统消纳风电弃风的制氢容量配置方法[J]. 太阳能学报, 2017, 38(6): 1517-1525. |
HUANG Dawei, QI Deqing, YU Na, et al. Capacity allocation method of hydrogen production system consuming abandoned wind power[J]. Acta Energiae Solaris Sinica, 2017, 38(6): 1517-1525. | |
[37] | 易伟, 徐建源, 吴冠男, 等. 利用风电制氢储能系统提高东北某区域电网弃风消纳能力[J]. 电力电容器与无功补偿, 2018, 39(4): 190-197. |
YI Wei, XU Jianyuan, WU Guannan, et al. Improvement of wind abandoned consumption capacity in a region of northeast region China by wind power hydrogen storage energy system[J]. Power Capacitor & Reactive Power Compensation, 2018, 39(4): 190-197. | |
[38] | 赵国涛, 钱国明, 丁泉, 等. 基于区块链的可再生能源消纳激励机制研究[J]. 华电技术, 2021, 43(4): 71-77. |
ZHAO Guotao, QIAN Guoming, DING Quan, et al. Study on incentive mechanism of renewable energy consumption based on blockchain[J]. Huadian Technology, 2021, 43(4): 71-77. | |
[39] | 喻小宝, 郑丹丹. 区块链技术在能源电力领域的应用及展望[J]. 华电技术, 2020, 42(8): 17-23. |
YU Xiaobao, ZHENG Dandan. Application and exploration of blockchain technology in energy and electricity[J]. Huadian Technology, 2020, 42(8): 17-23. | |
[40] | 王剑晓, 夏清, 李庚银, 等. 基于多市场均衡的综合能源市场机制设计[J]. 中国电机工程学报, 2021, 41(17): 5789-5803. |
WANG Jianxiao, XIA Qing, LI Gengyin, et al. Mechanism design for integrated energy markets based on multi-market equilibrium[J]. Proceedings of the CSEE, 2021, 41(17): 5789-5803. | |
[41] | 周椿奇, 向月, 张新, 等. V2G辅助服务调节潜力与经济性分析:以上海地区为例[J]. 电力自动化设备, 2021, 41(8): 135-141. |
ZHOU Chunqi, XIANG Yue, ZHANG Xin, et al. Potential regulation ability and economy analysis of auxiliary service by V2G: Taking Shanghai area for an example[J]. Electric Power Automation Equipment, 2021, 41(8): 135-141. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | DOU Zhenlan, LI Jiawen, ZHANG Chunyan, CAI Zhenqi, YUAN Benfeng, JIA Kunqi, XIAO Guoping, WANG Jianqiang. Spatiotemporal distributed parameter modeling of solid oxide electrolysis cells [J]. Integrated Intelligent Energy, 2024, 46(7): 53-62. |
[3] | XU Zhifan, LI Huasen, LI Wenyuan, YU Kai. State of charge prediction for lithium-ion batteries based on KF-RCMNN [J]. Integrated Intelligent Energy, 2024, 46(7): 81-86. |
[4] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[5] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[6] | WANG Lin, KONG Xiaomin, ZHOU Zhongyu, LIU Jianping, WANG Xiaodong, ZHANG Ning. Distributed photovoltaic-energy storage reactive power optimization method for distribution networks under cloud energy storage mode [J]. Integrated Intelligent Energy, 2024, 46(6): 44-53. |
[7] | ZHANG Xunxiang, WU Jiekang, SUN Yehua, PENG Qijian. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power [J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[8] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[9] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[10] | DONG Qiang, XU Jun, FANG Dongping, FANG Lijuan, CHEN Yanqiong. Optimal scheduling strategy of distributed PV‒energy storage systems based on PV output characteristics [J]. Integrated Intelligent Energy, 2024, 46(4): 17-23. |
[11] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[12] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[13] | LI Yimin, DONG Haiying, DING Kun, WANG Jinyan. Multi-stage optimal allocation of energy storage considering long-term load probability prediction [J]. Integrated Intelligent Energy, 2024, 46(2): 19-27. |
[14] | SUN Na, DONG Haiying, CHEN Wei, MA Hulin. Secondary frequency modulation control strategy for large-scale grid-side energy storage devices in new power systems [J]. Integrated Intelligent Energy, 2024, 46(2): 59-67. |
[15] | KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks [J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||