Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (4): 1-9.doi: 10.3969/j.issn.2097-0706.2024.04.001
• Optimal Scheduling of Integrated Energy System • Next Articles
LI Yun1(), ZHOU Shijie1, HU Zheqian2, LIANG Junyuan1, XIAO Leiming1,*(
)
Received:
2023-10-11
Revised:
2024-01-02
Published:
2024-04-25
Contact:
XIAO Leiming
E-mail:yunli29@163.com;xlm997632@163.com
Supported by:
CLC Number:
LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA[J]. Integrated Intelligent Energy, 2024, 46(4): 1-9.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.04.001
[1] | 胡志坚, 刘如, 陈志. 中国“碳中和”承诺下技术生态化发展战略思考[J]. 中国科技论坛, 2021(5):14-20. |
HU Zhijian, LIU Ru, CHEN Zhi. The Ecological development strategy of technology under the commitment of "carbon neutrality" in China[J]. China Science and Technology Forum, 2021(5): 14-20. | |
[2] |
CHEN Y B, ZHANG Z, CHEN H, et al. Robust UC model based on multi-band uncertainty set considering the temporal correlation of wind/load prediction errors[J]. IET Generation, Transmission & Distribution, 2020, 14(2):180-190.
doi: 10.1049/gtd2.v14.2 |
[3] | YOU F, ZHANG N, LIU G C. Optimal Scheduling of integrated energy system based on NSGA-II-MOABC[C]// International Conference on Power and Energy Technology. 2022:1175-1180. |
[4] | 邢家维, 孙树敏, 程艳, 等. 综合能源系统多能流建模和仿真技术综述[J]. 山东电力技术, 2022, 49(6):1-7. |
XING Jiawei, SUN Shumin, CHENG Yan, et al. Review on multi-energy system flow modeling and simulation technology for integrated energy system[J]. Shandong Electric Power, 2022, 49(6):1-7. | |
[5] | 刁涵彬, 李培强, 王继飞, 等. 考虑电/热储能互补协调的综合能源系统优化调度[J]. 电工技术学报, 2020, 35(21):4532-4543. |
DIAO Hanbin, LI Peiqiang, WANG Jifei, et al. Optimal scheduling of integrated energy system considering the complementary coordination of electric and thermal energy storage[J]. Transactions of China Electrotechnical Society, 2020, 35(21): 4532-4543. | |
[6] |
ZHOU X, MA Z J, ZOU S L, et al. Consensus-based distributed economic dispatch for multi micro energy grid systems under coupled carbon emissions[J]. Applied Energy, 2022, 324:119641.
doi: 10.1016/j.apenergy.2022.119641 |
[7] | XIE H, XU Z H, WANG W. Optimal dispatching strategy for integrated energy system with electricity-heat-cold-hydrogen[C]// 2022 IEEE 5th International Electrical and Energy Conference. 2022:3132-3136. |
[8] |
WANG L Y, LIN J L, DONG H Q, et al. Demand response comprehensive incentive mechanism-based multi-time scale optimization scheduling for park integrated energy system[J]. Energy, 2023, 270:126893.
doi: 10.1016/j.energy.2023.126893 |
[9] |
TIAN L, CHENG L, GUO J, et al. System modeling and optimal dispatching of multi-energy microgrid with energy storage[J]. Journal of Modern Power Systems and Clean Energy, 2020, 8(5):809-819.
doi: 10.35833/MPCE.2020.000118 |
[10] |
GUO Z J, WEI W, SHAHIDEHPOUR M, et al. Two-timescale dynamic energy and reserve dispatch with wind power and energy storage[J]. IEEE Transactions on Sustainable Energy, 2022, 14(1):490-503.
doi: 10.1109/TSTE.2022.3217173 |
[11] | GUO R, YE H W, ZHAO Y. Low carbon dispatch of electricity-gas-thermal-storage integrated energy system based on stepped carbon trading[J]. Energy Reports, 2022, 8:449-455. |
[12] | ZHANG F F, WANG Y Q, HUANG D, et al. Integrated energy system region model with renewable energy and optimal control method[J]. Frontiers in Energy Research, 2022,10:1-17. |
[13] |
YANG D F, XU Y, LIU X J, et al. Economic-emission dispatch problem in integrated electricity and heat system considering multi-energy demand response and carbon capture technologies[J]. Energy, 2022, 253:124153.
doi: 10.1016/j.energy.2022.124153 |
[14] |
LI F, LI X S, ZHANG B Q, et al. Multi objective optimization configuration of a prosumer's energy storage system based on an improved fast nondominated sorting genetic algorithm[J]. IEEE Access, 2021, 9:27015-27025.
doi: 10.1109/Access.6287639 |
[15] | 刘聪, 费炜, 胡胜. 狼群算法的研究与应用综述[J]. 科学技术与工程, 2020, 20(9):3378-3386. |
LIU Cong, FEI Wei, HU Sheng. Research and application of wolf pack algorithm[J]. Science Technology and Engineering, 2020, 20(9): 3378-3386. | |
[16] |
LIU Y C, ĆETENOVIĆ D, LI H Y, et al. An optimized multi-objective reactive power dispatch strategy based on improved genetic algorithm for wind power integrated systems[J]. International Journal of Electrical Power & Energy Systems, 2022, 136:107764.
doi: 10.1016/j.ijepes.2021.107764 |
[17] | 王灿, 张羽, 田福银, 等. 基于双向主从博弈的储能电站与综合能源系统经济运行策略[J]. 电工技术学报, 2023, 38(13):3436-3446,3472. |
WANG Can, ZHANG Yu, TIAN Fuyin, et al. Economic operation strategy of energy storage power station and integrated energy system based on two-way principal-agent game[J]. Transactions of the Chinese Electrotechnical Society, 2023, 38(13):3436-3446,3472. | |
[18] | 杜预则, 董海鹰. 基于主从博弈的储能电站协同源荷消纳新能源调控策略[J/OL]. 综合智慧能源, 2023:1-9(2023-05-12)[2023-10-05].https://doi.org/10.3969/j.issn.2097-0706.2023.11.001. |
DU Yuze, DONG Haiying. Research on the source-load-storage collaborative scheduling strategy for new energy accommodation based on Stackelberg game[J/OL]. Integrated Intelligent Energy, 2023:1-9(2023-05-12)[2023-10-05].https://doi.org/10.3969/j.issn.2097-0706.2023.11.001. | |
[19] | 雷霆, 彭昊宇. 基于概率模型集成的含云储能多微电网市场主从博弈优化调度[J/OL]. 现代电力, 2023:1-11(2023-09-07)[2023-10-05].https://doi.org/10.19725/j.cnki.1007-2322.2023.0096. |
LEI Ting, PENG Haoyu. Optimized scheduling of cloud-based energy storage multi-microgrid market based on probabilistic model ensemble[J/OL]. Modern Power, 2023:1-11(2023-09-07)[2023-10-05]. https://doi.org/10.19725/j.cnki.1007-2322.2023.0096. | |
[20] |
王芸芸, 马志程, 周强, 等. 计及公平性的多能合作博弈鲁棒优化调度[J]. 综合智慧能源, 2023, 45(2): 10-21.
doi: 10.3969/j.issn.2097-0706.2023.02.002 |
WANG Yunyun, MA Zhicheng, ZHOU Qiang, et al. Robust optimal scheduling of multi-energy cooperative game considering fairness[J]. Integrated Intelligent Energy, 2023, 45(2): 10-21.
doi: 10.3969/j.issn.2097-0706.2023.02.002 |
|
[21] | 许梓荣, 刘友波, 殷科, 等. 基于主从博弈的售电商储能增值服务模式及其策略模型[J]. 电力系统自动化, 2023, 47(20):154-165. |
XU Zirong, LIU Youbo, YIN Ke, et al. The value-added service model and strategy model of energy storage for power sellers based on the principal-agent game[J]. Automation of Electric Power Systems, 2023, 47(20): 154-165. | |
[22] | 梅文卿, 刘晓峰, 王嘉诚, 等. 基于势博弈的负荷聚合商日前市场动态定价模型[J/OL]. 综合智慧能源, 2023:1-8(2023-08-24)[2023-10-05].https://doi.org/10.3969/j.issn.2097-0706.2023.11.008. |
MEI Wenqing, LIU Xiaofeng, WANG Jiacheng, et al. A day-ahead market pricing model for load aggregators based on potential game[J/OL]. Integrated Intelligent Energy, 2023:1-8(2023-08-24)[2023-10-05].https://doi.org/10.3969/j.issn.2097-0706.2023.11.008. | |
[23] | 郑成浩, 张潇, 苏岭东, 等. 碳排放交易机制下的综合能源系统低碳经济运行控制策略[J]. 电工技术, 2023(14):10-15,20. |
ZHENG Chenghao, ZHANG Xiao, SU Lingdong, et al. Low-carbon economic operation control strategy of integrated energy system under the carbon emissions trading scheme[J]. Electric Engineering, 2023(14): 10-15,20. | |
[24] | 杜先波, 陶苏朦, 刘述波, 等. 综合能源系统日前-日内多目标优化控制策略[J]. 电测与仪表, 2020, 57(16):109-117. |
DU Xianbo, TAO Sumeng, LIU Shubo, et al. Day-ahead and intraday optimal control strategies of integrated energy system considering multiple objectives[J]. Electrical Measurement & Instrumentation, 2020, 57(16):109-117. | |
[25] |
欧阳婷, 蔡晔, 王炜宇, 等. 计及风电、光伏预测不确定性的抽水蓄能日前全调度优化[J]. 综合智慧能源, 2022, 44(11): 20-27.
doi: 10.3969/j.issn.2097-0706.2022.11.003 |
OUYANG Ting, CAI Ye, WANG Weiyu, et al. Overall day-ahead scheduling optimization for pumped-storage power stations considering the uncertainty of wind and photovoltaic power prediction[J]. Integrated Intelligent Energy, 2022, 44(11): 20-27.
doi: 10.3969/j.issn.2097-0706.2022.11.003 |
|
[26] |
PAN C Y, FAN H T, ZHANG R X, et al. An improved multi-timescale coordinated control strategy for an integrated energy system with a hybrid energy storage system[J]. Applied Energy, 2023, 343: 121137.
doi: 10.1016/j.apenergy.2023.121137 |
[27] |
LI P, JIANG L, WANG J H, et al. A model-free optimal operation strategy of diversified demands-park integrated energy system considering energy cascade utilization[J]. International Journal of Electrical Power & Energy Systems, 2024, 155: 109518.
doi: 10.1016/j.ijepes.2023.109518 |
[28] |
LIU D W, LUO Z, QIN J H, et al. Low-carbon dispatch of multi-district integrated energy systems considering carbon emission trading and green certificate trading[J]. Renewable Energy, 2023, 218: 119312.
doi: 10.1016/j.renene.2023.119312 |
[29] | 江训谱, 吕施霖, 王健, 等. 考虑阶梯碳交易和最优建设时序的园区综合能源系统规划[J]. 电测与仪表, 2023, 60(12):11-19. |
JIANG Xunpu, LYU Shilin, WANG Jian, et al. Park-level integrated energy system planning considering tiered carbon trading and optimal construction timing[J]. Electrical Measurement & Instrumentation, 2023, 60(12): 11-19. | |
[30] |
葛磊蛟, 于惟坤, 朱若源, 等. 考虑改进阶梯式碳交易机制与需求响应的综合能源系统优化调度[J]. 综合智慧能源, 2023, 45(7): 97-106.
doi: 10.3969/j.issn.2097-0706.2023.07.011 |
GE Leijiao, YU Weikun, ZHU Ruoyuan, et al. Integrated energy system optimization scheduling considering improved stepped carbon trading mechanism and demand responses[J]. Integrated Intelligent Energy, 2023, 45(7): 97-106.
doi: 10.3969/j.issn.2097-0706.2023.07.011 |
|
[31] |
ZHANG M J, YANG J H, YU P S, et al. Dual-stackelberg game-based trading in community integrated energy system considering uncertain demand response and carbon trading[J]. Sustainable Cities and Society, 2024, 101:105088.
doi: 10.1016/j.scs.2023.105088 |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[3] | LI Mingyang, DOU Mengyuan. Optimal scheduling of virtual power plants integrating electric vehicles based on reinforcement learning [J]. Integrated Intelligent Energy, 2024, 46(6): 27-34. |
[4] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[5] | SHI Mingming, ZHU Rui, LIU Ruihuang. Joint economic dispatch of an AC/DC power system and a heating system [J]. Integrated Intelligent Energy, 2024, 46(4): 10-16. |
[6] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
[7] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[8] | ZHONG Yongjie, WANG Zidong, ZUO Jianxun, WANG Changqing, LI Jingxia, JI Ling. Economic dispatch of multi-energy complementary systems considering multi-period scales and regional stratification [J]. Integrated Intelligent Energy, 2024, 46(4): 52-59. |
[9] | XU Cong, HU Yongfeng, ZHANG Aiping, YOU Changfu. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening [J]. Integrated Intelligent Energy, 2024, 46(3): 45-53. |
[10] | ZHANG Li, JIN Li, REN Juguang, LIU Xiaobing. Research on load regulation strategy of integrated energy systems considering meteorological factors and time-of-use tariffs [J]. Integrated Intelligent Energy, 2024, 46(1): 18-27. |
[11] | LI Bohang, LI Hongzhong, ZHANG Minyuan. Low-carbon economic dispatch of integrated energy systems considering load characteristics [J]. Integrated Intelligent Energy, 2023, 45(8): 72-79. |
[12] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[13] | CAO Zilin, WANG Wenjing, ZHAO Wei, KANG Ligai, GAO Xiaofeng, YANG Yang, WANG Jinzhu. Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response [J]. Integrated Intelligent Energy, 2023, 45(7): 11-21. |
[14] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
[15] | JIN Li, ZHANG Li, TANG Yang, TANG Qiao, REN Juguang, YANG Kun, LIU Xiaobing. Short-term prediction on integrated energy loads considering temperature-humidity index and coupling characteristics [J]. Integrated Intelligent Energy, 2023, 45(7): 70-77. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||