Integrated Intelligent Energy ›› 2024, Vol. 46 ›› Issue (4): 24-33.doi: 10.3969/j.issn.2097-0706.2024.04.004
• Resource Allocation of Integrated Energy System • Previous Articles Next Articles
CHEN Yong1(), XIAO Leiming1,*(
), WANG Jingnan2, WU Jian2
Received:
2023-10-12
Revised:
2023-11-17
Published:
2024-04-25
Contact:
XIAO Leiming
E-mail:cy940515@163.com;xlm997632@163.com
Supported by:
CLC Number:
CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion[J]. Integrated Intelligent Energy, 2024, 46(4): 24-33.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2024.04.004
[1] | 李鹏, 王瑞, 冀浩然, 等. 低碳化智能配电网规划研究与展望[J]. 电力系统自动化, 2021, 45(24):10-21. |
LI Peng, WANG Rui, JI Haoran, et al. Research and prospect of planning for low-carbon smart distribution network[J]. Automation of Electric Power Systems, 2021, 45(24):10-21. | |
[2] | 张希良, 姜克隽, 赵英汝, 等. 促进能源气候协同治理机制与路径跨学科研究[J]. 全球能源互联网, 2021, 4(1):1-4. |
ZHANG Xiliang, JIANG Kejun, ZHAO Yingru, et al. Cross disciplinary research on mechanisms and pathways for promoting coordinated governance of energy and climate[J] Global Energy Internet, 2021, 4(1):1-4. | |
[3] | 宋国君, 王语苓, 姜艺婧. 基于“双碳”目标的碳排放控制政策设计[J]. 中国人口·资源与环境, 2021, 31(9):55-63. |
SONG Guojun, WANG Yuling, JIANG Yijing. Carbon emission control policy design based on the targets of carbon peak and carbon neutrality[J]. China Population Resources and Environment, 2021, 31(9):55-63. | |
[4] | 廖柏睿, 吴晓南, 苏要港, 等. 综合能源系统运行优化设计与运行策略研究[J]. 热能动力工程, 2023(3):82-90. |
LIAO Birui, WU Xiaonan, SU Yaogang, et al. Research on operation optimization design and operation strategy of integrated energy system[J]. Journal of Engineering for Thermal Energy and Power, 2023(3):82-90. | |
[5] |
李宜哲, 王丹, 贾宏杰, 等. 综合能源系统能量枢纽多样性建模和典型适用性研究[J]. 综合智慧能源, 2023, 45(7):22-29.
doi: 10.3969/j.issn.2097-0706.2023.07.003 |
LI Yizhe, WANG Dan, JIA Hongjie, et al. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications[J]. Integrated Intelligent Energy, 2023, 45(7): 22-29.
doi: 10.3969/j.issn.2097-0706.2023.07.003 |
|
[6] |
ALABI T M, AGHIMIEN E I, AGBAJOR F D, et al. A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems[J]. Renewable Energy, 2022, 194:822-849.
doi: 10.1016/j.renene.2022.05.123 |
[7] |
刘海涛, 朱海南, 李丰硕, 等. 计及碳成本的电-气-热-氢综合能源系统经济运行策略[J]. 电力建设, 2021, 42(12):21-29.
doi: 10.12204/j.issn.1000-7229.2021.12.003 |
LIU Haitao, ZHU Hainan, LI Fengshuo, et al. Economic operation strategy of the electricity gas heat hydrogen comprehensive energy system considering carbon costs[J]. Electric Power Construction, 2021, 42 (12): 21-29.
doi: 10.12204/j.issn.1000-7229.2021.12.003 |
|
[8] | 董海鹰, 贠韫韵, 马志程, 等. 计及多能转换及光热电站参与的综合能源系统低碳优化运行[J]. 电网技术, 2020, 44(10):3689-3699. |
DONG Haiying, YUN Yunyun, MA Zhicheng, et al. Low carbon optimized operation of comprehensive energy systems involving multi energy conversion and solar thermal power plants[J]. Power System Technology, 2020, 44(10):3689-3699. | |
[9] |
蓝静, 朱继忠, 李盛林, 等. 考虑碳惩罚的电化学储能消纳风光与调峰研究[J]. 综合智慧能源, 2022, 44(1): 9-17.
doi: 10.3969/j.issn.2097-0706.2022.01.002 |
LAN Jing, ZHU Jizhong, LI Shenglin, et al. Research on electrochemical energy storage to assist new energy consumption and peak load regulation considering carbon penalty[J]. Integrated Intelligent Energy, 2022, 44(1): 9-17.
doi: 10.3969/j.issn.2097-0706.2022.01.002 |
|
[10] |
ZHONG X Q, ZHONG W F, LIU Y, et al. Optimal energy management for multi-energy multi-microgrid networks considering carbon emission limitations[J]. Energy 2022; 246:123428.
doi: 10.1016/j.energy.2022.123428 |
[11] | 周贤正, 陈玮, 郭创新. 考虑供能可靠性与风光不确定性的城市多能源系统规划[J]. 电工技术学报, 2019, 34(17):3672-3686. |
ZHOU Xianzheng, CHEN Wei, GUO Chuangxin. An urban multi-energy system planning method incorporating energy supply reliability and wind-photovoltaic generators uncertainty[J]. Transactions of China Electrotechnical Society, 2019, 34(17): 3672-3686. | |
[12] |
何勇萍, 刘小敏, 肖艳利, 等. 电热耦合综合能源系统双阶段多目标规划研究[J]. 运筹与管理, 2023, 32(1):27-33.
doi: 10.12005/orms.2023.0005 |
HE Yongping, LIU Xiaomin, XIAO Yanli, et al. Study on the two-stage and multi-objective planning of electro-thermal coupled integrated energy systems[J]. Operations Research and Management Science, 2023, 32(1): 27-33.
doi: 10.12005/orms.2023.0005 |
|
[13] | 郑亚锋, 魏振华, 刘思渠. 考虑风光不确定性的综合能源系统规划设计方法[J]. 科学技术与工程, 2021, 21(31):13342-13348. |
ZHENG Yafeng, WEI Zhenhua, LIU Siqu. Integrated energy system planning and design method considering uncertainty of wind power and photovoltaic system[J]. Science Technology and Engineering, 2021, 21(31): 13342-13348. | |
[14] | 孙强, 谢典, 聂青云, 等. 含电-热-冷-气负荷的园区综合能源系统经济优化调度研究[J]. 中国电力, 2020, 53(4):79-88. |
SUN Qiang, XIE Dian, NIE Qingyun, et al. Research on economic optimization and dispatching of comprehensive energy systems in industrial parks with electricity heat cold gas load[J]. Electric Power, 2020, 53(4):79-88. | |
[15] |
WANG H T, GU C H, ZHANG X, et al. Optimal CHP planning in integrated energy systems considering network charges[J]. IEEE Systems Journal, 2020, 14(2):2684-2693.
doi: 10.1109/JSYST.4267003 |
[16] |
HUANG Y S, SHI M S, WANG W Y, et al. A two-stage planning and optimization model for water-hydrogen integrated energy system with isolated grid[J]. Journal of Cleaner Production, 2021, 313:127889.
doi: 10.1016/j.jclepro.2021.127889 |
[17] |
MA T F, WU J Y, HAO L L, et al. The optimal structure planning and energy management strategies of smart multi energy systems[J]. Energy, 2018, 160: 122-141.
doi: 10.1016/j.energy.2018.06.198 |
[18] |
HELENO M, REN Z. Multi-energy microgrid planning considering heat flow dynamics[J]. IEEE Transactions on Energy Conversion, 2020, 36(3): 1962-1971.
doi: 10.1109/TEC.2020.3041572 |
[19] |
SHAHIDEHPOUR M, LI C B, YANG H Y, et al. Multistage expansion planning of integrated biogas and electric power delivery system considering the regional availability of biomass[J]. IEEE Transactions on Sustainable Energy, 2020, 12(2): 920-930.
doi: 10.1109/TSTE.2020.3025831 |
[20] | 杨安全, 赵清松, 岳颖, 等. 电-气-热综合能源系统多目标优化调度策略[J]. 东北电力技术, 2023, 44(12):1-8. |
ZYANG Anquan, ZHAO Qingsong, YUE Ying, et al. Research on multi-objective optimization scheduling of electricity-gas-thermal integrated energy systems based on wind/photovoltaic power accommodation[J]. Northeast Electric Power Technology, 2023, 44(12):1-8. | |
[21] | 朱玲, 李威, 王骞, 等. 基于校正条件生成对抗网络的风电场群绿氢储能系统容量配置[J/OL]. 电工技术学报:1-17(2023-03-22)[2023-10-10].https://doi.org/10.19595/j.cnki.1000-6753.tces.222009. |
ZHU Ling, LI Wei, WANG Qian, et al. Wind farms-green hydrogen energy storage system capacity sizing method based on corrected-conditional generative adversarial network[J/OL]. Transactions of China Electrotechnical Society:1-17(2023-03-22)[2023-10-10].https://doi.org/10.19595/j.cnki.1000-6753.tces.222009. | |
[22] |
CHEN X Q, DONG W, YANG L F, et al. Scenario-based robust capacity planning of regional integrated energy systems considering carbon emissions[J]. Renewable Energy, 2023, 207: 359-375.
doi: 10.1016/j.renene.2023.03.030 |
[23] |
HART E K, JACOBSON M Z. A Monte Carlo approach to generator portfolio planning and carbon emissions assessments of systems with large penetrations of variable renewables[J]. Renewable Energy, 2011, 36(8):2278-2286.
doi: 10.1016/j.renene.2011.01.015 |
[24] |
CHEN Y Z, WANG Y S, KIRSCHEN D, et al. Model-free renewable scenario generation using generative adversarial networks[J]. IEEE Transactions on Power Systems, 2018, 33(3):3265-3275.
doi: 10.1109/TPWRS.2018.2794541 |
[25] |
YANG D F, JIANG C, CAI G W, et al. Interval method based optimal planning of multi-energy microgrid with uncertain renewable generation and demand[J]. Applied Energy, 2020, 277: 115491.
doi: 10.1016/j.apenergy.2020.115491 |
[26] | KINGMA D P, WELLING M. Auto-encoding variational Bayes[J/OL]. arXiv Preprint, 2013:1312.6114(2013-12-20)[2023-10-10].https://doi.org/10.48550/arXiv.1312.6114. |
[27] | NICHOL A Q, DHARIWAL P. Improved denoising diffusion probabilistic models[C]// International Conference on Machine Learning. PMLR, 2021:8162-8171. |
[28] |
KULLBACK S, LEIBLER R A. On information and sufficiency[J]. The Annals of Mathematical Statistics, 1951, 22 (1): 79-86.
doi: 10.1214/aoms/1177729694 |
[29] | SONG Y, ERMON S. Generative modeling by estimating gradients of the data distribution[J/OL]. arXiv Preprint, 2019:1907.05600(2019-07-12)[2023-10-10].https://doi.org/10.48550/arXiv.1907.05600. |
[30] | HO J, JAIN A, ABBEEL P. Denoising diffusion probabilistic models[J]. Advances in Neural Information Processing Systems, 2020, 33:6840-6851. |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[3] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[4] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[5] | SHI Mingming, ZHU Rui, LIU Ruihuang. Joint economic dispatch of an AC/DC power system and a heating system [J]. Integrated Intelligent Energy, 2024, 46(4): 10-16. |
[6] | TANG Zihan, WANG Shuaijie, JU Zhenhe, LEI Zhiqi. Performance optimization of photovoltaic/thermal systems coupled with air source heat pumps [J]. Integrated Intelligent Energy, 2024, 46(4): 34-41. |
[7] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[8] | ZHONG Yongjie, WANG Zidong, ZUO Jianxun, WANG Changqing, LI Jingxia, JI Ling. Economic dispatch of multi-energy complementary systems considering multi-period scales and regional stratification [J]. Integrated Intelligent Energy, 2024, 46(4): 52-59. |
[9] | SUN Jian, ZHANG Yunfan, CAI Xiaolong, LIU Dingqun. Optimal scheduling of HVAC systems based on predicted loads [J]. Integrated Intelligent Energy, 2024, 46(3): 12-19. |
[10] | XU Cong, HU Yongfeng, ZHANG Aiping, YOU Changfu. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening [J]. Integrated Intelligent Energy, 2024, 46(3): 45-53. |
[11] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[12] | ZHANG Li, JIN Li, REN Juguang, LIU Xiaobing. Research on load regulation strategy of integrated energy systems considering meteorological factors and time-of-use tariffs [J]. Integrated Intelligent Energy, 2024, 46(1): 18-27. |
[13] | LI Bohang, LI Hongzhong, ZHANG Minyuan. Low-carbon economic dispatch of integrated energy systems considering load characteristics [J]. Integrated Intelligent Energy, 2023, 45(8): 72-79. |
[14] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[15] | CAO Zilin, WANG Wenjing, ZHAO Wei, KANG Ligai, GAO Xiaofeng, YANG Yang, WANG Jinzhu. Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response [J]. Integrated Intelligent Energy, 2023, 45(7): 11-21. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||