Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (7): 70-77.doi: 10.3969/j.issn.2097-0706.2023.07.008
• Optimal Operation and Control • Previous Articles Next Articles
JIN Li1(), ZHANG Li1,*(
), TANG Yang1, TANG Qiao1, REN Juguang1, YANG Kun2, LIU Xiaobing1
Received:
2023-04-27
Revised:
2023-06-08
Accepted:
2023-07-07
Published:
2023-07-25
Supported by:
CLC Number:
JIN Li, ZHANG Li, TANG Yang, TANG Qiao, REN Juguang, YANG Kun, LIU Xiaobing. Short-term prediction on integrated energy loads considering temperature-humidity index and coupling characteristics[J]. Integrated Intelligent Energy, 2023, 45(7): 70-77.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.07.008
[1] | 任炬光, 张力, 金立, 等. 考虑可再生能源消纳的建筑综合能源系统日前经济调度模型[J]. 工程科学与技术, 2023, 55(2):160-170. |
REN Juguang, ZHANG Li, JIN Li, et al. Day-ahead economic dispatch model of building integrated energy systems considering the renewable energy consumption[J]. Advanced Engineering Sciences, 2023, 55(2):160-170. | |
[2] | 刘创. 计及气象参数的区域电-热综合能源系统运行优化研究[D]. 北京: 华北电力大学, 2021. |
LIU Chuang. Research on optimization of regional integrated electric-heat system considering the meteorological parameter[D]. Beijing: North China Electric Power University, 2021. | |
[3] |
张爱平, 赵利兴, 刘静. 楼宇型综合能源服务系统智能优化运行研究[J]. 综合智慧能源, 2022, 44(2):42-48.
doi: 10.3969/j.issn.2097-0706.2022.02.007 |
ZHANG Aiping, ZHAO Lixing, LIU Jing. Research on optimized operation of building-type integrated energy service systems[J]. Integrated Intelligent Energy, 2022, 44(2):42-48.
doi: 10.3969/j.issn.2097-0706.2022.02.007 |
|
[4] | 王定美, 张睿骁, 赵龙. 基于MMoE-TCN的综合能源系统短期多元负荷预测[J]. 电气传动自动化, 2023, 45(1):39-45,38. |
WANG Dingmei, ZHANG Ruixiao, ZHAO Long. Multivariate load short-term forecasting of integrated energy system based on MMoE-TCN[J]. Electric Drive Automation, 2023, 45(1): 39-45,38. | |
[5] | 马建鹏. 基于智能理论的综合能源系统多元负荷短期预测研究[D]. 青岛: 青岛大学, 2020. |
MA Jianpeng. Study on short-term prediction of multivariate load of integrated energy system based on intelligent theory[D]. Qingdao: Qingdao University, 2020. | |
[6] | 陆普凡. 基于改进神经网络的电力负荷短期预测方法研究[D]. 南京: 南京邮电大学, 2022. |
LU Pufan. Research on short-term forecasting of power load based on improved neural network[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2022. | |
[7] |
RANMAN S, BABA M. Software-design and evaluation of a microcomputer-based automated load forecasting system[J]. IEEE Transactions on Power System, 1989, 4(2):782-788.
doi: 10.1109/59.193840 |
[8] | 韩富佳, 王晓辉, 乔骥, 等. 基于人工智能技术的新型电力系统负荷预测研究综述[J/OL]. 中国电机工程学报, 2023:1-24[2023-03-12].https://doi.org/10.13334/j.0258-8013.pcsee.221560. |
HAN Fujia, WANG Xiaohui, QIAO Ji, et al. Review on artificial intelligence based load forecasting research for the new-type power system[J/OL]Proceedings of the CSEE, 2023:1-24[2023-03-12].https://doi.org/10.13334/j.0258-8013.pcsee.221560. | |
[9] |
李华, 陆明璇, 佟永吉, 等. 态势感知技术在新型电力系统运行中的应用[J]. 综合智慧能源, 2023, 45(3):24-33.
doi: 10.3969/j.issn.2097-0706.2023.03.004 |
LI Hua, LU Mingxuan, TONG Yongji, et al. Application of situational awareness technology in the safe and stable operation of new power systems[J]. Integrated Intelligent Energy, 2023, 45(3):24-33.
doi: 10.3969/j.issn.2097-0706.2023.03.004 |
|
[10] | 田浩含. 区域综合能源系统多元负荷短期预测研究[D]. 青岛: 青岛大学, 2021. |
TIAN Haohan. Short-term load forecasting study of multivariate regional integrated energy system[D]. Qingdao: Qingdao University, 2021. | |
[11] | 罗凤章, 张旭, 杨欣, 等. 基于深度学习的综合能源配电系统负荷分析预测[J]. 高电压技术, 2021, 47(1):23-32. |
LUO Fengzhang, ZHANG Xu, YANG Xin, et al. Load analysis and prediction of integrated energy distribution system based on deep learning[J]. High Voltage Engineering, 2021, 47(1): 23-32. | |
[12] |
CHEN B Y, WANG Y F. Short-term electric load forecasting of integrated energy system considering nonlinear synergy between different loads[J]. IEEE Access, 2021, 9:43562-43573.
doi: 10.1109/ACCESS.2021.3066915 |
[13] | 陈锦鹏, 胡志坚, 陈纬楠, 等. 二次模态分解组合 DBiLSTM-MLR的综合能源系统负荷预测[J]. 电力系统自动化, 2021, 45(13):85-94. |
CHEN Jinpeng, HU Zhijian, CHEN Weinan, et al. Load prediction of integrated energy system based on combination of quadratic modal decomposition and deep bidirectional long short-term memory and multiple linear regression[J]. Automation of Electric Power Systems, 2021, 45(13):85-94. | |
[14] | 王永利, 周泯含, 姚苏航, 等. 基于多能耦合机理的综合能源系统多元负荷协同预测模型[J]. 华北电力大学学报(自然科学版), 2022, 49(2):118-126. |
WANG Yongli, ZHOU Minhan, YAO Suhang, et al. Multi-load cooperative prediction model of integrated energ system based on multi-energy coupling mechanism[J]. Journal of North China Electric Power University (Natural Science Edition), 2022, 49(2):118-126. | |
[15] | 吴晨, 姚菁, 薛贵元, 等. 基于MMoE多任务学习和长短时记忆网络的综合能源系统负荷预测[J]. 电力自动化设备, 2022, 42(7):33-39. |
WU Chen, YAO Jing, XUE Guiyuan, et al. Load forecasting of integrated energy system based on MMoE multi-task learning and LSTM[J]. Electric Power Automation Equipment, 2022, 42(7):33-39. | |
[16] | 吕忠麟, 顾洁, 孟璐. 基于耦合特征与多任务学习的综合能源系统短期负荷预测[J]. 电力系统自动化, 2022, 46(11):58-66. |
LYU Zhonglin, GU Jie, MENG Lu. Short-term load forecasting of integrated energy system based on coupling characteristics and multi task learning[J]. Automation of Electric Power Systems, 2022, 46(11):58-66. | |
[17] | 张大海, 孙锴, 倪平浩. 基于耦合关系挖掘及渐进式分层提取多任务学习网络的风-光-荷短期预测[J/OL]. 电网技术, 2022:1-14[2023-03-12].https://doi.org/10.13335/j.1000-3673.pst.2022.1492. |
ZHANG Dahai, SUN Kai, NI Pinghao. Wind-photovoltaic-load short-term forecast based on coupling relation mining and progressive layered extraction of multi-task learning network[J/OL]. Power System Technology, 2022:1-14[2023-03-12].https://doi.org/10.13335/j.1000-3673.pst.2022.1492. | |
[18] | 朱继忠, 董瀚江, 李盛林, 等. 数据驱动的综合能源系统负荷预测综述[J]. 中国电机工程学报, 2021, 41(23): 7905-7924. |
ZHU Jizhong, DONG Hanjiang, LI Shenglin, et al. Review of data-driven load forecasting for integrated energy system[J]. Proceedings of the CSEE, 2021, 41(23):7905-7924. | |
[19] |
SUGIHARA G, MAY R, YE H, et al. Detecting causality in complex ecosystems[J]. Science, 2012, 338(6106): 496-500.
doi: 10.1126/science.1227079 pmid: 22997134 |
[20] | WANG C, SHE Z, CAO L. Coupled attribute analysis on numerical data[C]// 23rd International Joint Conference on Artificial Intelligence. Beijing, 2013:3-9. |
[21] |
金立, 张力, 任炬光, 等. 针对气象敏感型综合能源负荷的收敛交叉映射因果关系分析[J]. 综合智慧能源, 2023, 45(1):23-30.
doi: 10.3969/j.issn.2097-0706.2023.01.003 |
JIN Li, ZHANG Li, REN Juguang, et al. Causality analysis of climate sensitive loads in integrated energy system based on convergence cross-mapping method[J]. Integrated Intelligent Energy, 2023, 45(1):23-30.
doi: 10.3969/j.issn.2097-0706.2023.01.003 |
|
[22] | ASU. Campus metabolism[EB/OL].(2021-05-13)[2023-03-12]. http://cm.asu.edu/. |
[23] | NSRDB data viewer[EB/OL].(2021-05-13)[2023-03-12]. https://maps.nrel.gov/nsrdb-viewer/. |
[1] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[2] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[3] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[4] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[5] | SHI Mingming, ZHU Rui, LIU Ruihuang. Joint economic dispatch of an AC/DC power system and a heating system [J]. Integrated Intelligent Energy, 2024, 46(4): 10-16. |
[6] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
[7] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[8] | ZHONG Yongjie, WANG Zidong, ZUO Jianxun, WANG Changqing, LI Jingxia, JI Ling. Economic dispatch of multi-energy complementary systems considering multi-period scales and regional stratification [J]. Integrated Intelligent Energy, 2024, 46(4): 52-59. |
[9] | XU Cong, HU Yongfeng, ZHANG Aiping, YOU Changfu. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening [J]. Integrated Intelligent Energy, 2024, 46(3): 45-53. |
[10] | ZHANG Li, JIN Li, REN Juguang, LIU Xiaobing. Research on load regulation strategy of integrated energy systems considering meteorological factors and time-of-use tariffs [J]. Integrated Intelligent Energy, 2024, 46(1): 18-27. |
[11] | LI Fangyi, LI Nan, ZHOU Yan, XIE Wu. Prediction on the regional carbon emission factor for power generation based on multi-dimensional data and deep learning [J]. Integrated Intelligent Energy, 2023, 45(8): 11-17. |
[12] | LI Bohang, LI Hongzhong, ZHANG Minyuan. Low-carbon economic dispatch of integrated energy systems considering load characteristics [J]. Integrated Intelligent Energy, 2023, 45(8): 72-79. |
[13] | WANG Yongzhen, HAN Yibo, HAN Kai, HAN Juntao, SONG Kuo, ZHANG Lanlan. Researches on data center integrated energy systems based on knowledge graph [J]. Integrated Intelligent Energy, 2023, 45(7): 1-10. |
[14] | CAO Zilin, WANG Wenjing, ZHAO Wei, KANG Ligai, GAO Xiaofeng, YANG Yang, WANG Jinzhu. Research on optimal scheduling of distributed integrated energy systems in load-intensive areas considering demand response [J]. Integrated Intelligent Energy, 2023, 45(7): 11-21. |
[15] | LI Yizhe, WANG Dan, JIA Hongjie, ZHOU Tianshuo, CAO Yitao, ZHANG Shuai, LIU Jiawei. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications [J]. Integrated Intelligent Energy, 2023, 45(7): 22-29. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||