Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (7): 61-69.doi: 10.3969/j.issn.2097-0706.2023.07.007
• Optimal Operation and Control • Previous Articles Next Articles
BAO Yixin1(), XU Luoyun1,2(
), YANG Qiang1,*(
)
Received:
2023-06-05
Revised:
2023-07-03
Accepted:
2023-07-25
Published:
2023-07-25
Supported by:
CLC Number:
BAO Yixin, XU Luoyun, YANG Qiang. Optimized control method for flexible load of a building complex based on MADDPG reinforcement learning[J]. Integrated Intelligent Energy, 2023, 45(7): 61-69.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.07.007
[1] | 王晓燕, 宋方宇轩, 卢珊. 电网调控中人工智能应用的关键技术研究[J]. 科技与创新, 2022,(23):4-6,11 |
WANG Xiaoyan, SONG Fangyuxuan, LU Shan. Research on key technologies of artificial intelligence application in power grid regulation[J]. Science and Technology & Innovation, 2022,(23):4-6,11. | |
[2] | 崔文虎. 电力系统故障演化建模与分析[D]. 成都: 中国电子科技大学, 2018. |
CUI Wenhu. Power system fault evolution modeling and analysis[D]. Chengdu: University of Electronic Science and Technology of China, 2018. | |
[3] | 姜丽珍, 董淑杰, 闫振伟, 等. 电网调控技术在电力系统中的应用[J]. 电子制作, 2019(12):69-70. |
JIANG Lizhen, DONG Shujie, YAN Zhenwei, et al. Application of power grid regulation technology in power system[J]. Practical Electronics, 2019(12):69-70. | |
[4] |
吉斌, 孙绘, 昌力, 等. 黏性电力用户参与需求侧响应的行为决策建模与分析[J]. 综合智慧能源, 2022, 44(2):80-88.
doi: 10.3969/j.issn.2097-0706.2022.02.011 |
JI Bing, SUN Hui, CHANG Li, et al. Modeling and analysis on decision making behavior of loyal users participating in demand-side response[J]. Intrgrated Intelligent Energy, 2022, 44(2):80-88. | |
[5] | 闪鑫, 陆晓, 翟明玉, 等. 人工智能应用于电网调控的关键技术分析[J]. 电力系统自动化, 2019, 43(1):49-57. |
SHAN Xin, LU Xiao, ZHAI Mingyu, et al. Analysis of key technologies for artificial intelligence applied to power grid dispatch and control[J]. Automation of Electric Power Systems, 2019, 43(1):49-57. | |
[6] | LIU Y, HUANG X, LI S, et al. A construction method of power grid monitoring knowledge graph[J]. Journal of Physics:Conference Series, 2022, 2166(1):12-14. |
[7] | 赵俊峰, 庄哲寅, 承轶青, 等. 资源描述框架语义网视角下的智能电网模型[J]. 华电技术, 2014, 36(4):19-21. |
ZHAO Junfeng, ZHUANG Zheyin, CHENG Yiqing, et al. Intelligent power grid model under visual angle of RDF Semantic Web[J]. Huadian Technology, 2014, 36(4): 19-21. | |
[8] | CHEN Z, MI W, LIN J, et al. Discussion on intelligence assistant scheme of dispatching and control operation in power grid[J]. Automation of Electric Power Systems, 2019, 43(22):173-178. |
[9] | 吴俊勇. 国内外智能电网的发展战略[J]. 变频器世界, 2011, 34(9):36-37. |
WU Junyong. Development strategy of smart grid at China and abroad[J]. The World of Inverters, 2011, 34(9):36-37. | |
[10] | 巫飞新. 国内外智能电网技术发展现状[J]. 电气开关, 2012, 50(2):3-6. |
WU Feixin. Development status of smart grid technology home and abroad[J]. Electric Switchgear, 2012, 50(2):3-6. | |
[11] | 史梦, 张志生, 罗学礼, 曹敏. 智能电网建设思路及国内外发展战略[C]// 2010年云南电力技术论坛论文集(文摘部分), 2010:1571-1575. |
[12] |
FANG J, WANG Y, LEI Z, et al. Control Strategy and Performance Analysis of Electrochemical Energy Storage Station Participating in Power System Frequency Regulation:A case study of the jiangsu power grid[J]. Sustainability, 2022, 14(15):9189.
doi: 10.3390/su14159189 |
[13] | HUANG Y, LI H, WANG Z, et al. Research on the mechanism and forecast opower grid regulation policy under the background of new electricity reform in China[J]. Journal of Physics:Conference Series, 2019, 1176(4):2030. |
[14] | 李明节, 陶洪铸, 许洪强, 等. 电网调控领域人工智能技术框架与应用展[J]. 电网技术, 2020, 44(2):393-400. |
LI Mingjie, TAO Hongzhu, XU Hongqiang, et al. The technical framework and application prospect of artificial intelligence application in the field of power grid dispatching and control[J]. Power System Technology, 2020, 44(2):393-400. | |
[15] | ELFAKI, ABDELRAHMAN O, SIM L, et al. Designing learning object repository using first order logic[C]// 2nd IIAI International Conference on Advanced Applied Informatics,IIAI-AAI 2013,413-414, 2013. |
[16] | 范士雄, 李立新, 王松岩, 等. 人工智能技术在电网调控中的应用研究[J]. 电网技术, 2020, 44(2):401-411. |
FAN Shixiong, LI Lixin, WANG Songyan, et al. Bowen.application analysis and exploration of artificial intelligence technology in power grid dispatch and control[J]. Power System Technology, 2020, 44(2):401-411. | |
[17] |
CLAESSENS B, VRANCX P, RUELENS F. Convolutional neural networks for automatic state-time feature extraction in reinforcement learning applied to residential load control[J], IEEE Transactions on Smart Grid, 2016, 9(4):3259-3269.
doi: 10.1109/TSG.2016.2629450 |
[18] | 李志. 智能电网调度控制系统的运行安全策略[J]. 集成电路应用, 2022, 39(11):132-133. |
LI Zhi. Strategy of operation security of smart grid dispatching control system[J]. Application of IC, 2022, 39(11):132-133. | |
[19] |
LIU S, GAO Y, YANG H, et al. Optimal guidance strategy for flexible load based on hybrid direct load control and time of use[J]. Global Energy Interconnection, 2023, 6(3):297-307.
doi: 10.1016/j.gloei.2023.06.004 |
[20] | AISLING P, CONSTANCE C, KYRI B, et al. GridLearn:Multiagent reinforcement learning for grid-aware building energy management[J]. Electric Power Systems Research, 2022,213. |
[21] |
华咏竹, 谢强强, 秦会斌, 等. 计及用户端调节容量的变频空调自适应电压调控策略[J]. 综合智慧能源, 2022, 44(2):21-28.
doi: 10.3969/j.issn.2097-0706.2022.02.004 |
HUA Yongzhu, XIE Qiangqiang, QING Huibin, et al. Adaptive voltage regulation strategy for inverter air conditioners considering the regulation capacity on user side[J]. Intrgrated Intelligent Energy, 2022, 44(2):21-28. | |
[22] | 童家麟, 洪庆, 吕洪坤, 等. 电源侧储能技术发展现状及应用前景综述[J]. 华电技术, 2021, 43(7):17-23. |
TONG Jialin, HONG Qing, LYU Hongkun, et al. Development status and application prospect of power side energy storage technology[J]. Huadian Technology, 2021, 43(7):17-23. | |
[23] |
赵建立, 汤卓凡, 王桂林, 等. 具有储能作用的用户侧资源运行特性[J]. 综合智慧能源, 2022, 44(2):8-14.
doi: 10.3969/j.issn.2097-0706.2022.02.002 |
ZHAO Jianli, TANG Zhuofan, WANG Guilin, et al. Operation characteristics of user-side resources with energy storage function[J]. Intrgrated Intelligent Energy, 2022, 44(2):8-14. | |
[24] |
LEON T, ALEXANDER S, FLORIAN S, et al. Pandapower an open-source python tool for convenient modeling, analysis,and optimization of electric power systems[J]. IEEE Transactions on Power Systems, 2018, 33(6):6510-6521.
doi: 10.1109/TPWRS.59 |
[25] |
DOLATABADI S, MAEDEH G, PIERLUIGI S, et al. An enhanced IEEE 33 bus benchmark test system for distribution system studies[J]. IEEE Transactions on Power Systems, 2021, 36(3):2565-2572.
doi: 10.1109/TPWRS.2020.3038030 |
[26] | BUŞONIU L, BABUŠKA R, BART D. A comprehensive survey of multiagent reinforcement learning[J]. IEEE Transactions on Systems,Man,and Cybernetics, 2008, 310(2):156-172. |
[27] | TAN M. Multi-agent reinforcement learning: Independent vs.cooperative agents[C]// Proceedings of the Tenth International Conference on Machine Learning,ICML 1993,330-337 |
[28] | WILLIAMS J. Simple statistical gradient-following algorithms for connectionist reinforcement learning[J]. Machine Learning, 1992, 8(3):229-256. |
[29] |
谢昕怡, 应黎明, 田书圣, 等. 基于MADDPG和智能合约的微电网交易决策优化[J]. 电力建设, 2022, 43(11):142-150.
doi: 10.12204/j.issn.1000-7229.2022.11.014 |
XIE Xingyi, YING Liming, TIAN Shushen, et al. Optimization of microgrid trading strategy based on maddpg and smart contracts[J]. Electric Power Construction, 2022, 43(11):142-150.
doi: 10.12204/j.issn.1000-7229.2022.11.014 |
|
[30] | DAVID B, ZHANG X, DYLAN W, et al. Power gridworld: A framework for multi-agentreinforcement learning in power systems[C]// Proceedings of the 2022 13th ACM International Conference on Future Energy Systems,Energy, 2022,565-570. |
[31] | 孟安波, 王鹏, 丁伟锋, 等. 基于强化学习及纵横交叉粒子群算法的电网最优潮流计算[J]. 华电技术, 2021, 43(8):74-82. |
MENG Anbo, WANG Peng, DING Weifeng, et al. Optimal power flow calculation of power grid based on reinforcement learning and crisscross PSO algorithm particle swarm optimization[J]. Huadian Technology, 2021, 43(8):74-82. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | ZHENG Qingming, JING Yanwei, LIANG Tao, CHAI Lulu, LYU Liangnian. Optimized scheduling on large-scale hydrogen production system for off-grid renewable energy based on DDPG algorithm [J]. Integrated Intelligent Energy, 2024, 46(6): 35-43. |
[3] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
[4] | TANG Zihan, WANG Shuaijie, JU Zhenhe, LEI Zhiqi. Performance optimization of photovoltaic/thermal systems coupled with air source heat pumps [J]. Integrated Intelligent Energy, 2024, 46(4): 34-41. |
[5] | YUAN Shuguang, ZHANG Yuting, WANG Feng, YUAN Guangzhen. Business operation modes and risk analysis of large-scale energy storage in western Inner Mongolia [J]. Integrated Intelligent Energy, 2024, 46(3): 63-71. |
[6] | SUN Jian, ZHANG Yunfan, CAI Xiaolong, LIU Dingqun. Optimal scheduling of HVAC systems based on predicted loads [J]. Integrated Intelligent Energy, 2024, 46(3): 12-19. |
[7] | LU Wentian. Increment-exchange-based decentralized multi-objective optimal power flow algorithm for active distribution grids [J]. Integrated Intelligent Energy, 2024, 46(2): 43-48. |
[8] | ZHANG Li, JIN Li, REN Juguang, LIU Xiaobing. Research on load regulation strategy of integrated energy systems considering meteorological factors and time-of-use tariffs [J]. Integrated Intelligent Energy, 2024, 46(1): 18-27. |
[9] | HU Ze, ZHU Ziqing, BU Siqi, CHAN Jiarong, WEI Xiang. Pricing strategy in district-level integrated energy market based on deep reinforcement learning [J]. Integrated Intelligent Energy, 2023, 45(7): 87-96. |
[10] | DOU Zhenlan, SHEN Jianzhong, ZHANG Chunyan, JIANG Jingjing, CHEN Qi, CHEN Jing. Time-decoupling hierarchical energy management of integrated energy systems considering supply and demand uncertainty [J]. Integrated Intelligent Energy, 2023, 45(6): 17-24. |
[11] | YIN Linfei, LIU Jinyuan. Smart home energy management based on artificial emotion LSTM algorithm [J]. Integrated Intelligent Energy, 2023, 45(11): 27-35. |
[12] | WANG Xin, CHEN Zucui, BIAN Zaiping, WANG Yeyao, WU Yumiao. Optimal allocation of a wind‒PV‒battery hybrid system in smart microgrid based on particle swarm optimization algorithm [J]. Integrated Intelligent Energy, 2022, 44(6): 52-58. |
[13] | Hengyuan GUO, Xiaofeng FENG, Guodong LI, Zhiguo DUAN, Yuanzheng LI. Low-carbon collaborative optimization for the commitment and maintenance of units considering hydrogen production equipment [J]. Integrated Intelligent Energy, 2022, 44(5): 78-87. |
[14] | LIU Jing, SHI Mengge, HU Yongfeng. Multi-stage energy management strategy for smart buildings with BESS [J]. Integrated Intelligent Energy, 2022, 44(3): 29-37. |
[15] | XU Zhirong, ZHANG Gaorui. Optimization strategy of microgrid responding users' bounded rational demand [J]. Integrated Intelligent Energy, 2022, 44(11): 43-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||