Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (1): 14-22.doi: 10.3969/j.issn.2097-0706.2023.01.002
• Power System Planning • Previous Articles Next Articles
WEI Yanping1(), WANG Jun1, LI Nanfan1, SHI Changli2,*(
)
Received:
2022-10-20
Revised:
2023-01-05
Published:
2023-01-25
Supported by:
CLC Number:
WEI Yanping, WANG Jun, LI Nanfan, SHI Changli. Prediction model of stochastic power in industrial parks based on Markov chain[J]. Integrated Intelligent Energy, 2023, 45(1): 14-22.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.01.002
[1] | 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6):61-69. |
SHU Yinbiao, CHEN Guoping, HE Jingbo, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6):61-69. | |
[2] | 国家能源局. 构建以新能源为主体的新型电力系统[EB/OL].(2015-02-16)[2022-12-30]. https://www.nea.gov.cn/2022-04/01/c_1310538944.htm. |
[3] | 肖先勇, 郑子萱. “双碳”目标下新能源为主体的新型电力系统:贡献、关键技术与挑战[J]. 工程科学与技术, 2022, 54(1):47-59. |
XIAO Xianyong, ZHENG Zixuan. New power systems dominated by renewable energy towards the goal of emission peak & carbon neutrality: Contribution, key techniques, and challenges[J]. Advanced Engineering Sciences, 2022, 54(1):47-59. | |
[4] | 文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40(6):1843-1855. |
WEN Yunfeng, YANG Weifeng, WANG Ronghua, et al. Review and prospect of toward 100% renewable energy power systems[J]. Proceedings of the CSEE, 2020, 40(6):1843-1855. | |
[5] | 康重庆, 姚良忠. 高比例可再生能源电力系统的关键科学问题与理论研究框架[J]. 电力系统自动化, 2017, 41(9):1-11. |
KANG Chongqing, YAO Liangzhong. Key scientific issues and theoretical research framework for power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9):1-11. | |
[6] |
MIGUEL E, JOANA P, BENJIAMIN M, et al. 100% renewable energy system in Japan: Smoothing and ancillary services[J]. Applied Energy, 2018, 224:698-707.
doi: 10.1016/j.apenergy.2018.04.067 |
[7] |
TUMMURU R, MISHRA K, SRINIVAS S. Dynamic energy management of renewable grid integrated hybrid energy storage system[J]. IEEE Transactions on Industrial Electronics, 2015, 62:7728-7737.
doi: 10.1109/TIE.2015.2455063 |
[8] | 万灿, 崔文康, 宋永华. 新能源电力系统概率预测:基本概念与数学原理[J]. 中国电机工程学报, 2021, 41(19):6493-6508. |
WAN Can, CUI Wenkang, SONG Yonghua. Theories, methodologies and applications of probabilistic forecasting for power systems with renewable energy sources[J]. Automation of Electric Power Systems, 2021, 41(19):6493-6508. | |
[9] |
MAHMOUD E, MARK S, ELDAR N, et al. A hierarchical two-stage energy management for a home microgrid using model predictive and real-time controllers[J]. Applied Energy, 2020, 269:115118.
doi: 10.1016/j.apenergy.2020.115118 |
[10] |
ZHANG Y, CAMPANA E, LUNDBLAD A, et al. Comparative study of hydrogen storage and battery storage in grid connected photovoltaic system: Storage sizing and rule-based operation[J]. Applied Energy, 2017, 201:397-411.
doi: 10.1016/j.apenergy.2017.03.123 |
[11] |
WANG Y, SUN Z, CHEN Z. Development of energy management system based on a rule-based power distribution strategy for hybrid power sources[J]. Energy, 2019, 175:1055-1066.
doi: 10.1016/j.energy.2019.03.155 |
[12] | 李国庆, 李欣彤, 边竞, 等. 计及光伏-负荷预测不确定性的直流跨省互联电网双级调度策略[J]. 中国电机工程学报, 2021, 41(14):4763-4776. |
LI Guoqing, LI Xintong, BIAN Jing, et al. Two level scheduling strategy for inter-provincial DC power grid considering the uncertainty of PV-load prediction[J]. Proceedings of the CSEE, 2021, 41(14):4763-4776. | |
[13] | 王玥, 张宇帆, 李昭昱, 等. 即插即用能量组织日前负荷概率预测方法[J]. 电网技术, 2019, 43(9):3053-3060. |
WANG Yue, ZHANG Yufan, LI Zhaoyu, et al. Day-ahead probability load forecasting of energy tissues with plug-and-play function[J]. Power System Technology, 2019, 43(9):3053-3060. | |
[14] |
林文智, 杨苹, 陈芯羽, 等. 计及需求响应不确定性的园区综合能源系统日前经济优化调度[J]. 电力建设, 2021, 42(12):9-20.
doi: 10.12204/j.issn.1000-7229.2021.12.002 |
LIN Wenzhi, YANG Ping, CHEN Xinyu, et al. Day-ahead optimal economic dispatch of park integrated energy system considering uncertainty of demand response[J]. Electric Power Construction, 2021, 42(12):9-20.
doi: 10.12204/j.issn.1000-7229.2021.12.002 |
|
[15] | 周坤, 许云飞, 崔昊杨, 等. 基于预测控制的多种新能源互补电力系统动态调度模型[J]. 现代电力, 2021, 38(3):248-257. |
ZHOU Kun, XU Yunfei, CUI Haoyang, et al. A predictive control based dynamic dispatch model for complementary power system containing multi-renewable energy sources[J]. Modern Electric Power, 2021, 38(3):248-257. | |
[16] | 高东学, 李文启, 李程昊, 等. 基于负荷预测的储能功率分配优化策略[J]. 可再生能源, 2021, 39(4):554-560. |
GAO Dongxue, LI Wenqi, LI Chenghao, et al. Optimization strategy of energy storage power allocation based on load forecasting[J]. Renewable Energy Resources, 2021, 39(4):554-560. | |
[17] | 汪希玥, 徐箭, 廖思阳, 等. 考虑虚拟储能特性的柔性负荷调控裕度评估方法[J]. 华电技术, 2021, 43(9):37-45. |
WANG Xiyue, XU Jian, LIAO Siyang, et al. Flexible load regulation margin evaluation method considering virtual energy storage characteristics[J]. Huadian Technology, 2021, 43(9):37-45. | |
[18] |
刘静, 史梦鸽, 胡永锋. 含电池储能系统的智能楼宇多阶段能量管理策略[J]. 综合智慧能源, 2022, 44(3):29-37.
doi: 10.3969/j.issn.2097-0706.2022.03.005 |
LIU Jing, SHI Mengge, HU Yongfeng. Multi-stage energy management strategy for smart buildings with BESS[J]. Integrated Intelligent Energy, 2022, 44(3):29-37.
doi: 10.3969/j.issn.2097-0706.2022.03.005 |
|
[19] | 熊图, 赵宏伟, 蔡智洋, 等. 动态组合深度学习模型在短期负荷及光伏功率预测中的应用[J]. 可再生能源, 2020, 38(4):458-463. |
XIONG Tu, ZHAO Hongwei, CAI Zhiyang, et al. Load and PV output forecasting based on dynamic ensemble deep learning model[J]. Renewable Energy Resources, 2020, 38(4):458-463. | |
[20] |
李旭炯, 孙林花, 杨郭明. 基于改进粒子群算法的光伏系统附加向心属性最大功率跟踪研究[J]. 综合智慧能源, 2022, 44(3):70-76.
doi: 10.3969/j.issn.2097-0706.2022.03.011 |
LI Xujiong, SUN Linhua, YANG Guoming. MPPT for PV systems appended with centripetal attribute based on improved PSO algorithm[J]. Integrated Intelligent Energy, 2022, 44(3):70-76.
doi: 10.3969/j.issn.2097-0706.2022.03.011 |
|
[21] | 张孝顺, 谭恬, 蒙蝶, 等. 基于光伏系统的动态代理模型最大功率点跟踪算法研究[J]. 华电技术, 2021, 43(8):1-10. |
ZHANG Xiaoshun, TAN Tian, MENG Die, et al. Study on dynamic surrogate model for MPPT of PV systems[J]. Huadian Technology, 2021, 43(8):1-10. | |
[22] |
HE J, SHI C, WEI T, et al. Hierarchical optimal energy management strategy of hybrid energy storage considering uncertainty for a 100% clean energy town[J]. Journal of Energy Storage, 2021, 41:102917.
doi: 10.1016/j.est.2021.102917 |
[23] | KUSKA N, HEITSCH H, ROMISCH W. Scenario reduction and scenario tree construction for power management problems[C]// 2003 IEEE Bologna Power Tech Conference Proceedings, 2003, 3:7-13. |
[1] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[2] | DOU Zhenlan, LI Jiawen, ZHANG Chunyan, CAI Zhenqi, YUAN Benfeng, JIA Kunqi, XIAO Guoping, WANG Jianqiang. Spatiotemporal distributed parameter modeling of solid oxide electrolysis cells [J]. Integrated Intelligent Energy, 2024, 46(7): 53-62. |
[3] | YU Haibin, LU Wenzhou, TANG Liang, ZHANG Yuchen, ZOU Xiangyu, JIANG Yuliang, LIU Jiabao. Economic dispatch and profit distribution strategy for multi-agent virtual power plants considering risk preferences [J]. Integrated Intelligent Energy, 2024, 46(6): 66-77. |
[4] | LI Qinggen, SUN Na, DONG Haiying. Optimal configuration for shared energy storage based on improved whale optimization algorithm [J]. Integrated Intelligent Energy, 2023, 45(9): 65-76. |
[5] | WU Xueqiong, XIA Dong. Review on intelligent planning and decision-making technology for the new active distribution network [J]. Integrated Intelligent Energy, 2023, 45(11): 20-26. |
[6] | YU Xiaobao, ZHAO Wenjing, SUN Yixin. Integrated energy system operation optimization model considering double uncertainties [J]. Integrated Intelligent Energy, 2023, 45(10): 10-17. |
[7] | DONG Weijie, CUI Quansheng, HAO Lanxin, WANG Yilong, LIU Guolin. Study on orderly charging strategy of electric vehicles in residential areas [J]. Integrated Intelligent Energy, 2023, 45(1): 82-87. |
[8] | JIANG Ting, ZHAO Yajiao. Carbon emission reduction analysis for gas-based distributed integrated energy systems [J]. Integrated Intelligent Energy, 2022, 44(9): 27-32. |
[9] | YE Zhaonian, ZHAO Changlu, WANG Yongzhen, HAN Kai, LIU Chaofan, HAN Juntao. Dual-objective optimization of energy networks with shared energy storage based on Nash bargaining [J]. Integrated Intelligent Energy, 2022, 44(7): 40-48. |
[10] | ZHAO Jing, XING Zheng, HUANG Baole, LI Peng, ZHANG Pan, ZHANG Tingyu. Research on innovative business models and development strategies of integrated energy services for power generation companies [J]. Integrated Intelligent Energy, 2022, 44(3): 17-22. |
[11] | YAN Xinchun, CAO Huan, HUA Yunpeng. Prediction on tube wall temperatures of boiler heating surfaces based on artificial intelligence [J]. Integrated Intelligent Energy, 2022, 44(3): 58-62. |
[12] | WANG Xiaohai, XU Jingjing, HU Yongfeng, LIU Guangyu, WANG Youtian. Business analysis on integrated energy services of power generation enterprises under the new circumstances [J]. Integrated Intelligent Energy, 2022, 44(3): 9-16. |
[13] | ZHANG Kaijie, DING Guofeng, WEN Ming, HUI Hongxun, DING Yi, HE Min, CHU Jiefeng, XIE Kang, YU Chutian, ZHANG Lijun. Review of optimal dispatching technology and market mechanism design for virtual power plants [J]. Integrated Intelligent Energy, 2022, 44(2): 60-72. |
[14] | HOU Luyang, GE Leijiao, WANG Biao, WANG Xuanyuan, XU Lianming, WANG Li. Research on the integrated energy system and the electricity market towards new prosumers [J]. Integrated Intelligent Energy, 2022, 44(12): 40-48. |
[15] | ZHOU Chengwei, LI Peng, YU Bin, YU Tianyang, MENG Wei. Optimal configuration for energy storage system capacity of wind-solar-storage microgrid [J]. Integrated Intelligent Energy, 2022, 44(12): 56-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||