Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (9): 27-32.doi: 10.3969/j.issn.2097-0706.2022.09.004
• Integrated Energy System • Previous Articles Next Articles
JIANG Ting1,2(), ZHAO Yajiao1(
)
Received:
2022-05-09
Revised:
2022-06-15
Published:
2022-09-25
CLC Number:
JIANG Ting, ZHAO Yajiao. Carbon emission reduction analysis for gas-based distributed integrated energy systems[J]. Integrated Intelligent Energy, 2022, 44(9): 27-32.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.09.004
[1] | 韩肖清, 李廷钧, 张东霞, 等. 双碳目标下的新型电力系统规划新问题及关键技术[J]. 高电压技术, 2021, 47(9):3036-3046. |
HAN Xiaoqing, LI Tingjun, ZHANG Dongxia, et al. New issues and key technologies of new power system planning under double carbon goals[J]. High Voltage Engineering, 2021, 47(9):3036-3046. | |
[2] | 秦海岩. 加快发展新能源,支撑落实“双碳”目标[J]. 可持续发展经济导刊, 2021(z2):23-25. |
[3] | 喻小宝, 郑丹丹, 杨康, 等. “双碳”目标下能源电力行业的机遇与挑战[J]. 华电技术, 2021, 43(6):21-32. |
YU Xiaobao, ZHENG Dandan, YANG Kang, et al. Opportunities and challenges faced by energy and power industry with the goal of carbon neutrality and carbon peak[J]. Huadian Technology, 2021, 43(6):21-32. | |
[4] | 张俊锋, 许文娟, 王跃锜, 等. 面向碳中和的中国碳排放现状调查与分析[J]. 华电技术, 2021, 43(10):1-10. |
ZHANG Junfeng, XU Wenjuan, WANG Yueqi, et al. Investigation and analysis on carbon emission status in China on the path to carbon neutrality[J]. Huadian Technology, 2021, 43(10):1-10. | |
[5] | 宋晓华. 基于低碳经济的发电行业节能减排路径研究[D]. 北京: 华北电力大学, 2012. |
[6] | YUAN Y, WENG B H, GONG H, et al. Energy efficiency under the constraint of carbon emission reduction[J]. International Journal of Education and Economics, 2021, 4(4):275-276. |
[7] | 李亚飞. 低碳经济背景下电力行业节能减排路径研究[J]. 科技经济市场, 2021(4):89-90. |
[8] | BELTRAMI F, FONTINI F, GROSSI L. The value of carbon emission reduction induced by renewable energy sources in the Italian power market[J]. Ecological Economics, 2021(4),189-196. |
[9] | 刘梦男. 新建燃煤热电联产项目的碳减排量化分析[D]. 邯郸: 河北工程大学, 2016. |
[10] | 尹硕, 郭兴五, 燕景, 等. 考虑高渗透率和碳排放约束的园区综合能源系统优化运行研究[J]. 华电技术, 2021, 43(4):1-7. |
YIN Shuo, GUO Xingwu, YAN Jing, et al. Study on optimized operation on integrated energy system in parks with high permeability and carbon emission constraints[J]. Huadian Technology, 2021, 43(4):1-7. | |
[11] | GUO Y, XIANG Y. Low‑carbon strategic planning of integrated energy systems[J/OL]. Frontiers in Energy Research, 2022.(2022-03-10)[2022-06-14]. https://doi.org/10.3389/fenrg.2022.858119. |
[12] |
LEE H, LEE M. Recent advances in ammonia combustion technology in thermal power generation system for carbon emission reduction[J]. Energies, 2021, 14(18):5604.
doi: 10.3390/en14185604 |
[13] |
WANG R, WEN X, WANG X, et al. Low carbon optimal operation of integrated energy system based on carbon capture technology,LCA carbon emissions and ladder‑type carbon trading[J]. Applied Energy, 2022, 311:118664.
doi: 10.1016/j.apenergy.2022.118664 |
[14] |
HUANG Y, WANG Y, LIU N. Low‑carbon economic dispatch and energy sharing method of multiple integrated energy systems from the perspective of system of systems[J]. Energy, 2022, 244:122717.
doi: 10.1016/j.energy.2021.122717 |
[15] | 徐文涛, 张晶, 马红明, 等. 计及多能转化效率的区域综合能源系统协同优化模型研究[J]. 电网与清洁能源, 2021, 37(10):98-106. |
XU Wentao, ZHANG Jing, MA Hongming, et al. Research on the collaborative optimization model of comprehensive energy system considering multi‑energy conversion efficiency[J]. Power System and Clean Energy, 2021, 37(10):98-106. | |
[16] | 李蕊. 燃煤热电联产碳减排计算方法研究[J]. 云南化工, 2017, 44(12):110-112. |
LI Rui. Study on carbon emission reduction calculation method for coal fired cogeneration[J]. Yunnan Chemical Technology, 2017, 44(12):110-112. | |
[17] | 王卫权, 于洋, 马丽芳. 燃煤电厂改造项目碳减排量化方法的应用[J]. 中国煤炭, 2019, 45(3):108-113,120. |
WANG Weiquan, YU Yang, MA Lifang. Application of quantitative method to calculate the GHG reduction in the coal‑fired power plant renovation project[J]. China Coal, 2019, 45(3):108-113,120. | |
[18] | 马双忱, 杨鹏威, 王放放, 等. “双碳”目标下传统火电面临的挑战与对策[J]. 华电技术, 2021, 43(12):36-45. |
MA Shuangchen, YANG Pengwei, WANG Fangfang, et al. Challenges and countermeasures of traditional thermal power under the goals of carbon neutrality and carbon peaking[J]. Huadian Technology, 2021, 43(12):36-45. | |
[19] | 刘芭, 章玉, 倪德先, 等. CCER方法学对天然气车船温室气体减排量核算方法的适用性分析[J]. 交通节能与环保, 2019, 15(1):45-48. |
LIU Ba, ZHANG Yu, NI Dexian, et al. Applicability of CCER methodology for accounting method of greenhouse gas emission reduction for natural gas vehicles and vessels[J]. Transport Energy Conservation & Environmental Protection, 2019, 15(1):45-48. |
[1] | LI Feifei, XU Huiwei, CUI Jindong. Research on the influencing factors of carbon emissions from petrochemical industry in Jilin Province based on the STIRPAT model [J]. Integrated Intelligent Energy, 2024, 46(8): 12-19. |
[2] | ZOU Fenghua, ZHU Xingyang, YIN Junping, MENG Shiyu, JIANG Haiyan, CHEN Aikang, LIU Lan. Development trend analysis on building energy systems under "dual carbon" target [J]. Integrated Intelligent Energy, 2024, 46(8): 36-40. |
[3] | DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems [J]. Integrated Intelligent Energy, 2024, 46(8): 67-76. |
[4] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[5] | GONG Gangjun, WANG Luyao, CHANG Zhuoyue, LIU Xu, XING Huidi. Security protection for integrated energy cyber physical systems based on energy hubs [J]. Integrated Intelligent Energy, 2024, 46(5): 65-72. |
[6] | LI Yun, ZHOU Shijie, HU Zheqian, LIANG Junyuan, XIAO Leiming. Optimal scheduling of integrated energy systems based on NSGA-Ⅱ-WPA [J]. Integrated Intelligent Energy, 2024, 46(4): 1-9. |
[7] | SHI Mingming, ZHU Rui, LIU Ruihuang. Joint economic dispatch of an AC/DC power system and a heating system [J]. Integrated Intelligent Energy, 2024, 46(4): 10-16. |
[8] | CHEN Yong, XIAO Leiming, WANG Jingnan, WU Jian. Capacity planning method with high reliability for integrated energy systems with low-carbon emissions based on scenario expansion [J]. Integrated Intelligent Energy, 2024, 46(4): 24-33. |
[9] | WANG Jinglong, WANG Hui, YANG Ye, ZHENG Yingying. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties [J]. Integrated Intelligent Energy, 2024, 46(4): 42-51. |
[10] | ZHONG Yongjie, WANG Zidong, ZUO Jianxun, WANG Changqing, LI Jingxia, JI Ling. Economic dispatch of multi-energy complementary systems considering multi-period scales and regional stratification [J]. Integrated Intelligent Energy, 2024, 46(4): 52-59. |
[11] | XU Cong, HU Yongfeng, ZHANG Aiping, YOU Changfu. Multi-load day-ahead and intra-day forecasting for integrated energy systems based on feature screening [J]. Integrated Intelligent Energy, 2024, 46(3): 45-53. |
[12] | WEI Xikai, TAN Xiaoshi, LIN Ming, CHENG Junjie, XIANG Keqi, DING Shuxin. Calculation and prediction of carbon emission factors for the national power grid from 2005 to 2035 [J]. Integrated Intelligent Energy, 2024, 46(3): 72-78. |
[13] | KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks [J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. |
[14] | ZHANG Li, JIN Li, REN Juguang, LIU Xiaobing. Research on load regulation strategy of integrated energy systems considering meteorological factors and time-of-use tariffs [J]. Integrated Intelligent Energy, 2024, 46(1): 18-27. |
[15] | TAN Jiuding, LI Shuaibing, LI Mingche, MA Xiping, KANG Yongqiang, DONG Haiying. Optimized scheduling of the power grid with participation of distributed microgrids considering their uncertainties [J]. Integrated Intelligent Energy, 2024, 46(1): 38-48. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||