Huadian Technology ›› 2021, Vol. 43 ›› Issue (4): 47-55.doi: 10.3969/j.issn.1674-1951.2021.04.008
• Intelligent Energy Consumption • Previous Articles Next Articles
HU Qian1(), SUN Zhida2(
), JIANG Keteng3,*(
), LEI Yi3(
), LI Haibo3(
)
Received:
2020-12-21
Revised:
2021-03-01
Published:
2021-04-25
Contact:
JIANG Keteng
E-mail:806545575@qq.com;sunpalstar@163.com;jiangketeng@tsinghua-eiri.org;leiyi@tsinghua-eiri.org;lihaibo@tsinghua-eiri.org
CLC Number:
HU Qian, SUN Zhida, JIANG Keteng, LEI Yi, LI Haibo. Deviation assessment and control method for electricity sales companies based on short-term load bundling forecast[J]. Huadian Technology, 2021, 43(4): 47-55.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.1674-1951.2021.04.008
Tab.1
Predicted and expected values obtained by multivariate linear regression
月份 | 预测值/(kW·h) | 期望值/(kW·h) | 相对偏差/% |
---|---|---|---|
1 | 3 605 746 | 3 367 626 | -7.070 84 |
2 | 2 993 355 | 2 603 650 | -14.967 60 |
3 | 4 151 472 | 4 087 003 | -1.577 42 |
4 | 4 149 477 | 3 450 795 | -20.247 00 |
5 | 4 162 358 | 2 891 701 | -43.941 50 |
6 | 4 287 959 | 3 822 399 | -12.179 80 |
7 | 4 389 988 | 3 884 121 | -13.024 00 |
8 | 4 405 069 | 4 427 350 | 0.503 26 |
9 | 4 200 764 | 4 479 331 | 6.218 94 |
10 | 3 499 168 | 3 128 333 | -11.854 10 |
11 | 3 576 883 | 3 655 073 | 2.139 22 |
12 | 3 724 683 | 3 507 531 | -6.191 03 |
Tab.2
Predicted and expected values of ten companies after bundling
月份 | 预测值/(kW·h) | 期望值/(kW·h) | 相对偏差/% |
---|---|---|---|
1 | 3 312 148.405 | 3 367 626 | 1.647 38 |
2 | 2 783 715.480 | 2 603 650 | -6.915 89 |
3 | 3 928 201.186 | 4 087 003 | 3.885 53 |
4 | 3 544 558.127 | 3 450 795 | -2.717 15 |
5 | 2 971 631.086 | 2 891 701 | -2.764 12 |
6 | 3 785 150.997 | 3 822 399 | 0.974 47 |
7 | 3 772 178.220 | 3 884 121 | 2.882 06 |
8 | 4 216 468.183 | 4 427 350 | 4.763 16 |
9 | 4 488 805.269 | 4 479 331 | -0.211 51 |
10 | 3 032 913.794 | 3 128 333 | 3.050 16 |
11 | 3 066 103.121 | 3 655 073 | 16.113 77 |
12 | 3 340 908.740 | 3 507 531 | 4.750 41 |
Tab.3
Bill of the deviated electricity in 2017 万元
月份 | 神经网络预测 | 多元线性回归预测 |
---|---|---|
1 | 0 | 8.295 374 |
2 | 6.239 736 | 15.268 490 |
3 | 0.024 353 | 0.397 925 |
4 | 2.029 828 | 28.082 480 |
5 | 1.759 459 | 53.041 690 |
6 | 0 | 17.826 100 |
7 | 0 | 19.526 100 |
8 | 0.614 346 | 0 |
9 | 0 | 1.608 302 |
10 | 0 | 14.150 450 |
11 | 6.785 040 | 0 |
12 | 0.479 945 | 7.310 930 |
合计 | 17.932 700 | 165.507 80 |
[1] | 电力中长期交易基本规则(暂行)[Z]. 国家发展改革委, 2016. |
[2] | 江健健, 陈玮, 黄滔, 等. 区域电力市场考核结算新方法[J]. 电力系统自动化, 2008,32(13):40-44. |
JIANG Jianjian, CHEN Wei, HUANG Tao, et al. New settlement methods in regional electricity markets[J]. Automation of Electric Power Systems, 2008,32(13):40-44. | |
[3] | 谢登, 尚超, 杨琦. 跨区电力交易结算中的偏差电量分析[J]. 智慧电力, 2015,43(2):5-8. |
XIE Deng, SHANG Chao, YANG Qi. Analysis of power deviation in settlement of interregional electricity trade[J]. Shaanxi Electric Power, 2015,43(2):5-8. | |
[4] | 郭曼兰, 陈皓勇, 张聪, 等. 偏差电量考核机制下售电公司的最优经营策略[J]. 电力系统自动化, 2017,41(20):17-25. |
GUO Manlan, CHEN Haoyong, ZHANG Cong, et al. Optimal market strategy of retailers under energy deviation penalty[J]. Automation of Electric Power Systems, 2017,41(20):17-25. | |
[5] | 刘敦楠, 汤洪海, 杨沫, 等. 促进新能源消纳的电力交易偏差结算补偿机制[J]. 电力系统自动化, 2017,41(24):105-111. |
LIU Dunnan, TANG Honghai, YANG Mo, et al. Settlement compensation mechanism of power trading deviation with promotion of renewable energy consumption[J]. Automation of Electric Power Systems, 2017,41(24):105-111. | |
[6] | 喻小宝, 谭忠富, 马佳乐, 等. 计及需求响应的售电公司正偏差电量考核优化模型[J]. 电力系统自动化, 2019,43(7):120-128. |
YU Xiaobao, TAN Zhongfu, MA Jiale, et al. Optimal model for positive deviation penalty of power retailers considering demand response[J]. Automation of Electric Power Systems, 2019,43(7):120-128. | |
[7] | 邱煜涵, 邵振国. 调度成本最小化的偏差电量结算方式[J]. 电力与电工, 2012,32(1):13-15. |
QIU Yuhan, SHAO Zhenguo. Settlement mode for deviation electric quantity based on minimizing of cost for dispatch[J]. Electric Power and Electrical Engineering, 2012,32(1):13-15. | |
[8] | 丁坚勇, 张银芽, 杨东俊, 等. 基于频率偏差的跨区电网交易偏差电量责任判定及定价方法[J]. 电力系统自动化, 2017,41(16):105-110. |
DING Jianyong, ZHANG Yinya, YANG Dongjun, et al. Responsibility determination and pricing method of deviation electric quantity based on frequency deviation of cross-regional grid strading[J]. Automation of Electric Power Systems, 2017,41(16):105-110. | |
[9] | 廖旎焕, 胡智宏, 马莹莹, 等. 电力系统短期负荷预测方法综述[J]. 电力系统保护与控制, 2011,39(1):147-152. |
LIAO Nihuan, HU Zhihong, MA Yingying, et al. Review of the short-term load forecasting methods of electric power system[J]. Power System Protection and Control, 2011,39(1):147-152. | |
[10] | 陶莉, 朱小光. 数据预处理对电力负荷预测精度的影响[J]. 华电技术, 2015,37(9):8-10. |
TAO Li, ZHU Xiaoguang. Research on data pre processing to improve the accuracy of load forecasting[J]. Huadian Technology, 2015,37(9):8-10. | |
[11] | 张钦, 王锡凡, 王建学. 需求侧实时电价下供电商购售电风险决策[J]. 电力系统自动化, 2010,34(3):22-27. |
ZHANG Qin, WANG Xifan, WANG Jianxue. Electricity purchasing and selling risk decision for power supplier under real-time pricing[J]. Automation of Electric Power Systems, 2010,34(3):22-27. | |
[12] | 林顺富, 郝朝, 汤晓栋, 等. 基于数据挖掘的楼宇短期负荷预测方法研究[J]. 电力系统保护与控制, 2016,44(7):83-89. |
LIN Shunfu, Hao Chao, TANG Xiaodong, et al. Study of short-term load forecasting method based on data mining for buildings[J]. Power System Protection and Control, 2016,44(7):83-89. | |
[13] | 彭显刚, 胡松峰, 吕大勇. 基于RBF神经网络的短期负荷预测方法综述[J]. 电力系统保护与控制, 2011,39(17):144-148. |
PENG Xiangang, HU Songfeng, LV Dayong. Review on grid short-term load forecasting methods based on RBF neural network[J]. Power System Protection and Control, 2011,39(17):144-148. | |
[14] | 陈丽娜, 张智晟, 于道林. 基于广义需求侧资源聚合的电力系统短期负荷预测模型[J]. 电力系统保护与控制, 2018,46(15):45-51. |
CHEN Lina, ZHANG Zhisheng, YU Daolin. Short-term load forecasting model of power system based on generalized demand side resources aggregation[J]. Power System Protection and Control, 2018,46(15):45-51. | |
[15] | 李伟, 闫宁, 张振刚. 基于粗糙集的混合支持向量机长期电力负荷预测研究[J]. 电力系统保护与控制, 2010,38(13):31-34. |
LI Wei, YAN Ning, ZHANG Zhengang. Study on long-term load forecasting of MIX-SVM based on rough set theory[J]. Power System Protection and Control, 2010,38(13):31-34. | |
[16] | 陈涛, 吕松, 任廷林, 等. 基于最小二乘支持向量机的周用电量预测方法[J]. 华电技术, 2020,42(1):35-40. |
CHEN Tao, LYU Song, REN Tinglin, et al. Prediction method for weekly electricity consumption based on LSSVM algorithm[J]. Huadian Technology, 2020,42(1):35-40. | |
[17] | 李啸骢, 李春涛, 从兰美, 等. 基于动态权值相似日选取算法的短期负荷预测[J]. 电力系统保护与控制, 2017,45(6):1-8. |
LI Xiaocong, LI Chuntao, CONG Lanmei, et al. Short-term load forecasting based on dynamic weight similar day selection algorithm[J]. Power System Protection and Control, 2017,45(6):1-8. | |
[18] | 黎祚, 周步祥, 林楠. 基于模糊聚类与改进BP算法的日负荷特性曲线分类与短期负荷预测[J]. 电力系统保护与控制, 2012,40(3):56-60. |
LI Zuo, ZHOU Buxiang, LIN Nan. Classification of daily load characteristics curve and forecasting of short-term load based on fuzzy clustering and improved BP algorithm[J]. Power System Protection and Control, 2012,40(3):56-60. | |
[19] | 袁铁江, 袁建党, 晁勤, 等. 电力系统中长期负荷预测综合模型研究[J]. 电力系统保护与控制, 2012,40(14):143-146. |
YUAN Tiejiang, YUAN Jiandang, CHAO Qin, et al. Study on the comprehensive model of mid-long term load forecasting[J]. Power System Protection and Control, 2012,40(14):143-146. | |
[20] | 王效. 基于综合模型的电力系统中长期负荷预测方法研究[J]. 华电技术, 2013,35(6):40-41. |
WANG Xiao. Study on power system load prediction method for medium and long term based on comprehensive model[J]. Huadian Technology, 2013,35(6):40-41. | |
[21] | 刘云, 张杭, 张爱民. 需求侧响应下基于负荷特性的改进短期负荷预测方法[J]. 电力系统保护与控制, 2018,46(13):126-133. |
LIU Yun, ZHANG Hang, ZHANG Aimin. Improved load forecasting method based on load characteristics under demand-side response[J]. Power System Protection and Control, 2018,46(13):126-133. | |
[22] | 胡晨, 杜松怀, 苏娟, 等. 新电改背景下我国售电公司的购售电途径与经营模式探讨[J]. 电网技术, 2016,40(11):3293-3299. |
HU Chen, DU Songhuai, SU Juan, et al. Preliminary research of trading approach and management modes of Chinese electricity retail companies under new electricity market reform[J]. Power System Technology, 2016,40(11):3293-3299. | |
[23] | 杨萌, 艾欣, 唐亮, 等. 计及风险规避的售电公司平衡市场优化交易策略研究[J]. 电网技术, 2016,40(11):3300-3308. |
YANG Meng, AI Xin, TANG Liang, et al. Optimal trading strategy in balancing market for electricity retailer considering risk aversion[J]. Power System Technology, 2016,40(11):3300-3308. | |
[24] | 邹鹏, 李春晖, 郭静, 等. 考虑可中断负荷的配售电公司最优购售电策略[J]. 南方电网技术, 2017,11(2):71-77. |
ZOU Peng, LI Chunhui, GUO Jing, et al. Optimal marketing strategy of distribution and retail companies considering interruptible load[J]. Southern Power System Technology, 2017,11(2):71-77. | |
[25] | 舒畅, 钟海旺, 夏清. 基于优化理论市场化的日前电力市场机制设计[J]. 电力系统自动化, 2016,40(2):55-62. |
SHU Chang, ZHONG Haiwang, XIA Qing. Day-ahead electricity market design based in market interpretation of optimization theory[J]. Automation of Electric Power Systems, 2016,40(2):55-62. | |
[26] | 郭乐, 张丹丹. 几种基于可靠性指标的容量支持机制电力市场分析[J]. 华电技术, 2019,41(11):12-17. |
GUO Le, ZHANG Dandan. Analysis on several capacity support mechanisms in electric market based on reliability index[J]. Huadian Technology, 2019,41(11):12-17. |
[1] | SUN Jian, ZHANG Yunfan, CAI Xiaolong, LIU Dingqun. Optimal scheduling of HVAC systems based on predicted loads [J]. Integrated Intelligent Energy, 2024, 46(3): 12-19. |
[2] | LI Yimin, DONG Haiying, DING Kun, WANG Jinyan. Multi-stage optimal allocation of energy storage considering long-term load probability prediction [J]. Integrated Intelligent Energy, 2024, 46(2): 19-27. |
[3] | KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks [J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. |
[4] | JIN Li, ZHANG Li, TANG Yang, TANG Qiao, REN Juguang, YANG Kun, LIU Xiaobing. Short-term prediction on integrated energy loads considering temperature-humidity index and coupling characteristics [J]. Integrated Intelligent Energy, 2023, 45(7): 70-77. |
[5] | ZHONG Wei, BO Qiming, CAI Chenyu, LU Shimeng, LI Manjie. Intelligent scheduling and control of a geothermal-gas complementary heating system based on model prediction [J]. Integrated Intelligent Energy, 2023, 45(12): 29-35. |
[6] | GAO Ming, HAO Yan. Ultra-short-term load forecasting based on BiLSTM network and error correction [J]. Integrated Intelligent Energy, 2023, 45(1): 31-40. |
[7] | JIN Li, ZHANG Li, REN Juguang, TANG Yang, TANG Qiao, LIU Xiaobing. Causality analysis of climate sensitive loads in integrated energy system based on convergence cross mapping [J]. Integrated Intelligent Energy, 2023, 45(1): 23-30. |
[8] | LI Bin, HU Chunjin, WANG Jing. Prediction method for adjustable load based on EEMD-BiLSTM [J]. Integrated Intelligent Energy, 2022, 44(9): 33-39. |
[9] | YAN Xinchun, CAO Huan, HUA Yunpeng. Prediction on tube wall temperatures of boiler heating surfaces based on artificial intelligence [J]. Integrated Intelligent Energy, 2022, 44(3): 58-62. |
[10] | LIAO Minle, HUANG Chongyang, DAI Chengcheng, LI Hualin, FAN Gaosong. Analysis method of electric energy substitution potential based on time series and BP neural network [J]. Integrated Intelligent Energy, 2022, 44(3): 38-43. |
[11] | ZHANG Aiping, ZHAO Lixing, LIU Jing. Research on optimized operation of building-type integrated energy service systems [J]. Integrated Intelligent Energy, 2022, 44(2): 42-48. |
[12] | CHEN De, MENG Anbo, CAI Yongfeng. Intelligent evaluation of cable harmonic loss based on CSO-BP neural network [J]. Huadian Technology, 2021, 43(8): 41-47. |
[13] | LI Yongqi, LEI Qikai, WANG Hao, HUA Sicong. State of health estimation for echelon-used batteries based on BP neural network [J]. Huadian Technology, 2021, 43(7): 42-46. |
[14] | TAN Zhiling, CHEN Caiming, XU Shengchao, WU Zhihong, SONG Yin, WANG Pengfei. Research on service life prediction on rolling bearings based on vibration signal analysis [J]. Huadian Technology, 2021, 43(5): 36-44. |
[15] | XU Shihua, LIU Ping, QIU Rui, OUYANG Jun, KONG Fanxu, XU Bin, ZHANG Junbo, WU Jun, HAN Rui. Research on the key issues in energy efficiency evaluation and improvement of offshore micro-integrated energy systems [J]. Huadian Technology, 2021, 43(4): 21-27. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||