Integrated Intelligent Energy ›› 2022, Vol. 44 ›› Issue (3): 38-43.doi: 10.3969/j.issn.2097-0706.2022.03.006
• Intelligent Energy Consumption • Previous Articles Next Articles
LIAO Minle(), HUANG Chongyang(
), DAI Chengcheng(
), LI Hualin(
), FAN Gaosong(
)
Received:
2021-09-17
Revised:
2021-10-12
Published:
2022-03-25
CLC Number:
LIAO Minle, HUANG Chongyang, DAI Chengcheng, LI Hualin, FAN Gaosong. Analysis method of electric energy substitution potential based on time series and BP neural network[J]. Integrated Intelligent Energy, 2022, 44(3): 38-43.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2022.03.006
Table 1
Parameters of electricity and its consumption
年份 | 标准煤使 用量/万t | 电能使用 量/(TW·h) | 电能使用量占能 源使用量比例/% | 电能替代 量/(TW·h) |
---|---|---|---|---|
2000 | 146 964 | 1 347.238 | 11.266 40 | 84.902 |
2001 | 155 547 | 1 472.346 | 11.633 22 | 46.427 |
2002 | 169 577 | 1 646.545 | 11.933 24 | 41.397 |
2003 | 197 083 | 1 903.160 | 11.868 01 | -10.461 |
2004 | 230 281 | 2 197.137 | 11.726 03 | -26.604 |
2005 | 261 369 | 2 494.032 | 11.727 35 | 0.281 |
2006 | 286 467 | 2 858.797 | 12.264 80 | 125.275 |
2007 | 311 442 | 3 271.181 | 12.908 60 | 163.146 |
2008 | 320 611 | 3 454.135 | 13.240 76 | 86.649 |
2009 | 336 126 | 3 703.214 | 13.540 31 | 81.927 |
2010 | 360 648 | 4 193.449 | 14.290 25 | 220.068 |
2011 | 387 043 | 4 700.088 | 14.924 46 | 199.730 |
2012 | 402 138 | 4 976.264 | 15.208 28 | 92.869 |
2013 | 416 913 | 5 420.341 | 15.978 39 | 261.244 |
2014 | 425 806 | 5 638.369 | 16.273 97 | 102.409 |
2015 | 429 905 | 5 801.997 | 16.586 58 | 109.351 |
2016 | 435 819 | 6 129.709 | 17.285 64 | 247.897 |
2017 | 448 529 | 6 482.097 | 17.761 39 | 173.624 |
2018 | 464 000 | 7 033.075 | 18.628 55 | 327.393 |
2019 | 486 000 | 7 649.563 | 19.344 27 | 283.023 |
[1] | 杨博文. 习近平新发展理念下碳达峰、碳中和目标战略实现的系统思维、经济理路与科学路径[J]. 经济学家, 2021(9):5-12. |
YANG Bowen. The systematic thinking,economic logic and scientific path for the realization of carbon summit and carbon neutral target strategy under Xi Jinping's new development concept[J]. Economist, 2021(9):5-12. | |
[2] | 刘振亚. 电能替代是实现碳达峰碳中和的重要途径[J]. 记者观察, 2021(13):41-45. |
[3] | 孙伟卿, 谈一鸣, 曾平良, 等. 考虑电能替代的全球负荷变化趋势分析[J]. 电网技术, 2019, 43(2):678-687. |
SUN Weiqing, TAN Yiming, ZENG Pingliang, et al. Analysis on variation trend of global load considering electricity substitution[J]. Power System Technology, 2019, 43(2):678-687. | |
[4] | 国家能源局. 关于推进电能替代的指导意见[Z]. 发改能源〔2016〕1054号. 2016. |
[5] | 刘可真, 王骞, 赵明, 等. 基于多方合作博弈及梯级化的电能替代效益分析[J]. 电网技术, 2020, 44(2):711-718. |
LIU Kezhen, WANG Qian, ZHAO Min, et al. Benefit analysis of electric energy substitution based on multi-player cooperative game and cascade model[J]. Power System Technology, 2020, 44(2):711-718. | |
[6] | 陈增. 区域电能替代潜力评估体系及模型研究[D]. 北京:华北电力大学, 2019. |
[7] | 李艳梅, 陈增. 基于联系度优化TOPSIS法的区域电能替代潜力评估研究[J]. 电网技术, 2019, 43(2):687-695. |
LI Yanmei, CHEN Zeng. Study on regional electric energy substitution potential evaluation based on TOPSIS method of optimized connection degree[J]. Power System Technology, 2019, 43(2):687-695. | |
[8] | 孙毅, 周爽, 单葆国, 等. 多情景下的电能替代潜力分析[J]. 电网技术, 2017, 41(1):118-123. |
SUN Yi, ZHOU Shuang, SHAN Baoguo, et al. Analysis of electric power alternative potential under multi-scenario[J]. Power System Technology, 2017, 41(1):118-123. | |
[9] | 孙毅, 石墨, 单葆国, 等. 基于粒子群优化支持向量机的电能替代潜力分析方法[J]. 电网技术, 2017, 41(6):1767-1771. |
SUN Yi, SHI Mo, SHAN Baoguo, et al. Electric energy substitution potential analysis method based on particle swarm optimization support vector machine[J]. Electric Power System Technology, 2017, 41(6):1767-1771. | |
[10] | 陈涛, 吕松, 任廷林, 等. 基于最小二乘支持向量机的周用电量预测方法[J]. 华电技术, 2020, 42(1):35-40. |
CHEN Tao, LYU Song, REN Tinglin, et al. Prediction method for weekly electricity consumption based on LSSVM algorithm[J]. Huadian Technology, 2020, 42(1):35-40. | |
[11] | 刘国静, 谈健, 李琥, 等. 基于Logistic模型的电能替代电量预测[J]. 电力工程技术, 2018, 37(6):39-43. |
LIU Guojing, TAN Jian, LI Hu, et al. Forecast of electric energy substitution based on logistic model[J]. Power System Technology, 2018, 37(6):39-43. | |
[12] | WAGENA M B, GOERING D, COLLICK A S, et al. Comparison of short-term streamflow forecasting using stochastic time series,neural networks,process-based,and Bayesian models[J/OL]. Environmental Modelling and Software, 2020.(2020-04-08)[2021-10-09]. https://doi.org/10.1016/j.envsoft.2020.104669. |
[13] | WU Y Q, GAO R L, YANG J Z. Prediction of coal and gas outburst:A method based on the BP neural network optimized by GASA[J]. Process Safety and Environmental Protection, 2020(133):64-72. |
[14] | YANG S M, CHEN D J, LI S L, et al. Carbon price forecasting based on modified ensemble empirical mode decomposition and long short-term memory optimized by improved whale optimization algorithm[J/OL]. Science of the Total Environment,2020.(2020-05-10)[2021-10-09]. https://doi.org/10.1016/j.scitotenv.2020.137117. |
[15] | 吴佳懋, 李艳, 符一健. 基于粗糙集-混沌时间序列Elman神经网络的短期用电量预测[J]. 电力系统保护与控制, 2019, 47(3):23-30. |
WU Jiamao, LI Yan, FU Yijian. Short-term power consumption prediction based on rough set chaotic time series Elman neural network[J]. Power System Protection and Control, 2019, 47(3):23-30. | |
[16] | 胡倩, 孙志达, 江坷滕, 等. 基于短期负荷打捆预测的售电公司偏差考核控制方法[J]. 华电技术, 2021, 43(4):47-55. |
HU Qian, SUN Zhida, JIANG Keteng, et al. Deviation assessment and control method for electricity sales companies based on short-term load bundling forecast[J]. Huadian Technology, 2021, 43(4):47-55. | |
[17] | ZHANG J H, MENG H, GU B, et al. Research on short-term wind power combined forecasting and its Gaussian could uncertainty to support the integration of renewables and EVs[J]. Renewable Energy, 2020(153):884-899. |
[18] | 于群, 张铮, 屈玉清, 等. 基于ARMA-GABP组合模型的电网大停电事故损失负荷预测[J]. 中国电力, 2018, 51(11):38-44. |
YU Qun, ZHANG Zheng, QU Yuqing, et al. Power loss prediction of large blackouts in power grid based on ARMA-GABP combined model[J]. Electric Power, 2018, 51(11):38-44. | |
[19] | 王瑞, 周晨曦, 逯静. 基于一种组合模型的短期电力负荷预测[J]. 计算机仿真, 2018, 35(12):396-400. |
WANG Rui, ZHOU Chenxi, LU Jing. Short-term load prediction based on a combination model[J]. Computer Simulation, 2018, 35(12):396-400. | |
[20] | 彭维珂, 聂椿明, 陈衡, 等. 基于智能算法的空冷火电机组负荷预测研究[J]. 华电技术, 2021, 43(3):57-64. |
PENG Weike, NIE Chunming, CHEN Heng, et al. Study on load forecasting for air cooling thermal power units based on intelligent algorithm[J]. Huadian Technology, 2021, 43(3):57-64. | |
[21] | 刘瑞叶, 黄磊. 基于动态神经网络的风电场输出功率预测[J]. 电力系统自动化, 2012, 36(11):19-22,37. |
LIU Ruiye, HUANG Lei. Wind power forecasting based on dynamic neural networks[J]. Automation of Electric Power Systems, 2012, 36(11):19-22,37. |
[1] | MIAO Yuesen, XIA Hongjun, HUANG Ningjie, LI Yun, ZHOU Shijie. Prediction on loads and photovoltaic output coefficients based on Informer [J]. Integrated Intelligent Energy, 2024, 46(4): 60-67. |
[2] | YAN Xinchun, CAO Huan, HUA Yunpeng. Prediction on tube wall temperatures of boiler heating surfaces based on artificial intelligence [J]. Integrated Intelligent Energy, 2022, 44(3): 58-62. |
[3] | CHEN De, MENG Anbo, CAI Yongfeng. Intelligent evaluation of cable harmonic loss based on CSO-BP neural network [J]. Huadian Technology, 2021, 43(8): 41-47. |
[4] | LI Yongqi, LEI Qikai, WANG Hao, HUA Sicong. State of health estimation for echelon-used batteries based on BP neural network [J]. Huadian Technology, 2021, 43(7): 42-46. |
[5] | TAN Zhiling, CHEN Caiming, XU Shengchao, WU Zhihong, SONG Yin, WANG Pengfei. Research on service life prediction on rolling bearings based on vibration signal analysis [J]. Huadian Technology, 2021, 43(5): 36-44. |
[6] | HU Qian, SUN Zhida, JIANG Keteng, LEI Yi, LI Haibo. Deviation assessment and control method for electricity sales companies based on short-term load bundling forecast [J]. Huadian Technology, 2021, 43(4): 47-55. |
[7] | SU Yu, ZHOU Chuan, WANG Qianggang. Closed-loop management on line loss indicators in a transformer area based on IoT [J]. Huadian Technology, 2021, 43(1): 19-23. |
[8] | JIANG Yin,REN Hongwei,CHEN Kai,ZHU Changjiang. Self-detecting method for faults in wind turbine controller I/O hardware based on BP neural network algorithm [J]. Huadian Technology, 2020, 42(5): 55-60. |
[9] | SUN Shugang,ZHU Yu,QIAN Bing,LI Xiaowu, NI Hongjun. Coating transfer process optimization based on GA [J]. Huadian Technology, 2020, 42(2): 72-75. |
[10] | HAN Yi, ZHANG Qiyue, WANG Yankai, YU Yingli, FU Xuchen, RONG Jun, DUAN Lunbo. Performance prediction on a 300 MW CFB based on BP neural network [J]. Huadian Technology, 2020, 42(12): 1-6. |
[11] | ZHANG Qian, LI Taizhou, YAO Junwei, ZHAO Xiaowei . Safety assessment of metal structure of general gantry crane based on BP neural network [J]. Huadian Technology, 2014, 36(3): 24-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||