Integrated Intelligent Energy ›› 2023, Vol. 45 ›› Issue (12): 29-35.doi: 10.3969/j.issn.2097-0706.2023.12.004
• Intelligent & Clean Heating • Previous Articles Next Articles
ZHONG Wei1,2(), BO Qiming1, CAI Chenyu1, LU Shimeng1, LI Manjie2,3
Received:
2023-04-14
Revised:
2023-05-24
Published:
2023-06-12
Supported by:
CLC Number:
ZHONG Wei, BO Qiming, CAI Chenyu, LU Shimeng, LI Manjie. Intelligent scheduling and control of a geothermal-gas complementary heating system based on model prediction[J]. Integrated Intelligent Energy, 2023, 45(12): 29-35.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.hdpower.net/EN/10.3969/j.issn.2097-0706.2023.12.004
[1] | 清华大学建筑节能研究中心. 中国建筑节能年度发展研究报告2022(公共建筑专题)[M]. 北京: 中国建筑工业出版社,2022. |
[2] |
孙健, 王寅武, 吴可欣, 等. 综合能源系统中热泵技术研究与应用[J]. 综合智慧能源, 2023, 45(4): 1-11.
doi: 10.3969/j.issn.2097-0706.2023.04.001 |
SUN Jian, WANG Yinwu, WU Kexin, et al. Research and application of heat pump technology in integrated energy systems[J]. Integrated Intelligent Energy, 2023, 45(4):1-11.
doi: 10.3969/j.issn.2097-0706.2023.04.001 |
|
[3] |
徐恒志, 周博文, 李广地, 等. 含水源热泵的区域综合能源系统低碳运行优化研究[J]. 综合智慧能源, 2022, 44(1): 39-48.
doi: 10.3969/j.issn.2097-0706.2022.01.006 |
XU Hengzhi, ZHOU Bowen, LI Guangdi, et al. Research on optimal operation of the regional integrated energy system with water-source heat pumps[J]. Integrated Intelligent Energy, 2022, 44(1): 39-48.
doi: 10.3969/j.issn.2097-0706.2022.01.006 |
|
[4] | 尹诗, 李振兴, 韩贝贝. 地源热泵技术节能性分析[J]. 能源与环保, 2020, 42(9): 138-142. |
YIN Shi, LI Zhenxing, HAN Beibei. Energy saving analysis of ground source heat pump technology[J]. China Energy and Environmental Protection, 2020, 42(9): 138-142. | |
[5] | 罗景辉, 崔志强, 王海宾. 土壤源热泵用于北方城镇住宅采暖的可行性分析[J]. 区域供热, 2016(3): 66-70. |
LUO Jinghui, CUI Zhiqiang, WANG Haibin. Feasibility analysis of soil source heat pump for residential heating in northern towns[J]. District Heating, 2016(3): 66-70. | |
[6] |
WANG H J, LIU B Y, YANG F F, et al. Test investigation of operation performance of novel split-type ground source heat pump systems for clean heating of rural households in North China[J]. Renewable Energy, 2021, 163: 188-197.
doi: 10.1016/j.renene.2020.08.147 |
[7] |
BUSATO F, LAZZARIN R, NORO M. Ground or solar source heat pump systems for space heating: Which is better? Energetic assessment based on a case history[J]. Energy and Buildings, 2015, 102: 347-356.
doi: 10.1016/j.enbuild.2015.05.053 |
[8] | 杨松. 燃气冷热电三联供技术与地源热泵技术相结合的应用[J]. 华电技术, 2016, 38(7): 67-69. |
YANG Song. Combined application of gas combined cooling heating and power supply technology and ground source heat pump[J]. Huadian Technology, 2016, 38(7): 67-69. | |
[9] |
薛小军, 侯智华, 张红昌, 等. 碳中和背景下燃气热电联产与地源热泵耦合替代燃气锅炉供热研究[J]. 动力工程学报, 2022, 42(4): 359-364,386.
doi: 10.19805/j.cnki.jcspe.2022.04.009 |
XUE Xiaojun, HOU Zhihua, ZHANG Hongchang, et al. Study on replacing gas-fired boiler by gas-fired cogeneration coupled with ground source heat pump for heating under carbon neutral background[J]. Journal of Chinese Society of Power Engineering, 2022, 42(4): 359-364,386.
doi: 10.19805/j.cnki.jcspe.2022.04.009 |
|
[10] | 张荣, 张勇, 刘凯, 等. 西北地区太阳能-地源热泵复合供热系统应用分析[J]. 能源与节能, 2020(9):53-56. |
ZHANG Rong, ZHANG Yong, LIU Kai, et al. Application analysis of solar-ground source heat pump composite heating system in northwest China[J]. Energy and Energy Conservation, 2020(9):53-56. | |
[11] |
ZHANG X Y, WANG E Y, LIU L S, et al. Machine learning-based performance prediction for ground source heat pump systems[J]. Geothermics, 2022, 105: 102509.
doi: 10.1016/j.geothermics.2022.102509 |
[12] | ŞAHIN A Ş, YAZICI H. Thermodynamic evaluation of the Afyon geothermal district heating system by using neural network and neuro-fuzzy[J]. Journal of Volcanology and Geothermal Research, 2012, 233-234: 65-71. |
[13] | 张淑秘, 高青, 白莉, 等. 基于Fluent/Simulink地下含水层流态对地下水源热泵性能的影响[J]. 应用基础与工程科学学报, 2016, 24(2): 242-252. |
ZHANG Shumi, GAO Qing, BAI Li, et al. The influence of the underground aquifer flow pattern to the groundwater heat pump based on Fluent/Simulink[J]. Journal of Basic Science and Engineering, 2016, 24(2): 242-252. | |
[14] |
LEE M, HAM S H, LEE S, et al. Multi-objective optimization of solar-assisted ground-source heat pumps for minimizing life-cycle cost and climate performance in heating-dominated regions[J]. Energy, 2023, 270: 126868.
doi: 10.1016/j.energy.2023.126868 |
[15] |
IKEDA S, CHOI W, OOKA R. Optimization method for multiple heat source operation including ground source heat pump considering dynamic variation in ground temperature[J]. Applied Energy, 2017, 193:466-478.
doi: 10.1016/j.apenergy.2017.02.047 |
[16] |
LIU X, ZUO Y N, YIN Z K, et al. Research on an evaluation system of the application effect of ground source heat pump systems for green buildings in China[J]. Energy, 2023, 262: 125374.
doi: 10.1016/j.energy.2022.125374 |
[17] |
KAPICIO A, ESEN H. Economic and environmental assessment of ground source heat pump system: The case of Turkey[J]. Sustainable Energy Technologies and Assessments, 2022, 53: 102562.
doi: 10.1016/j.seta.2022.102562 |
[18] |
GUAN Z X, ZHAO P, WANG J F, et al. Dynamic performance and control strategy of a combined heat and power system driven by geothermal energy considering the building multi-load requirements[J]. Energy Conversion and Management, 2022, 270: 116189.
doi: 10.1016/j.enconman.2022.116189 |
[19] |
MOKHTAR M, STABLES M, LIU X, et al. Intelligent multi-agent system for building heat distribution control with combined gas boilers and ground source heat pump[J]. Energy and Buildings, 2013, 62:615-626.
doi: 10.1016/j.enbuild.2013.03.045 |
[20] | 马连湘, 姜铭, 雷仲敏, 等. 能源革命推动雄安新区建设的总体思路与路径选择[J]. 中国工程科学, 2021, 23(1): 32-41. |
MA Lianxiang, JIANG Ming, LEI Zhongmin, et al. Promoting the construction of Xiong'an New Area through energy revolution:General idea and implementation route[J]. Strategic Study of CAE, 2021, 23(1): 32-41. | |
[21] | 陈嘉映. 供热系统结构与调控灵活性分析模型与应用研究[D]. 杭州: 浙江大学, 2022. |
CHEN Jiaying. Analytical model and application study of heating system structure and regulation flexibility[D]. Hangzhou: Zhejiang University, 2022. | |
[22] | 张浩然. 面向电能替代的混合式电热互补供暖系统及其优化配置方法[D]. 杭州: 浙江大学, 2022. |
ZHANG Haoran. Hybrid electric-thermal complementary heating system for electric energy replacement and its optimal configuration method[D]. Hangzhou: Zhejiang University, 2022. | |
[23] | 钟崴, 郑立军, 俞自涛, 等. 基于“数字孪生”的智慧供热技术路线[J]. 华电技术, 2020, 42(11): 1-5. |
ZHONG Wei, ZHENG Lijun, YU Zitao, et al. Smart heat-supply roadmap based on digital twin[J]. Huadian Technology, 2020, 42(11): 1-5. | |
[24] | 郑刚, 李金刚, 刘依婷. 基于建筑综合物性系数的换热站运行调节策略分析[J]. 华电技术, 2021, 43(12): 72-78. |
ZHENG Gang, LI Jingang, LIU Yiting. Analysis on operation regulation strategy for heat exchange stations based on building comprehensive physical property coefficients[J]. Huadian Technology, 2021, 43(12):72-78. |
[1] | LI Feifei, WANG Shuhong, CUI Jindong. Study on influencing factors of automobile carbon emissions from the perspective of whole life cycle: A case study of Jilin Province [J]. Integrated Intelligent Energy, 2024, 46(8): 20-27. |
[2] | HE Fangbo, PEI Ligeng, ZHENG Rui, FAN Kangjian, ZHANG Xiaoman, LI Gengfeng. Construction of new power system in Shaanxi Province with the collaboration of source-network-load-storage [J]. Integrated Intelligent Energy, 2024, 46(7): 40-46. |
[3] | WANG Jun, TIAN Hao, ZHAO Ergang, SHU Zhan, WAN Zijing. Low-carbon operation control on park-level integrated energy systems considering shared energy storage devices for electric vehicles [J]. Integrated Intelligent Energy, 2024, 46(6): 16-26. |
[4] | SUN Jian, ZHANG Yunfan, CAI Xiaolong, LIU Dingqun. Optimal scheduling of HVAC systems based on predicted loads [J]. Integrated Intelligent Energy, 2024, 46(3): 12-19. |
[5] | LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology [J]. Integrated Intelligent Energy, 2024, 46(2): 1-11. |
[6] | LI Yimin, DONG Haiying, DING Kun, WANG Jinyan. Multi-stage optimal allocation of energy storage considering long-term load probability prediction [J]. Integrated Intelligent Energy, 2024, 46(2): 19-27. |
[7] | KONG Huichao, WANG Wenzhong, LEI Yi, PENG Jing, LI Haibo. Electric power and energy rebalancing method for new power systems at receiving ends of industrial parks [J]. Integrated Intelligent Energy, 2024, 46(2): 68-74. |
[8] | CUI Jindong, WANG Yuqing. Research on user-side energy storage coordinated and optimized scheduling mechanism under cloud energy storage mode [J]. Integrated Intelligent Energy, 2023, 45(9): 18-25. |
[9] | YU Haibin, GAO Yiling, LU Zengjie, DONG Shuai, LU Lin, REN Yizhi. Low-carbon economic scheduling of deep peak regulating market with the participation of wind power,thermal power,storage and carbon capture units considering demand response [J]. Integrated Intelligent Energy, 2023, 45(8): 80-89. |
[10] | JIN Li, ZHANG Li, TANG Yang, TANG Qiao, REN Juguang, YANG Kun, LIU Xiaobing. Short-term prediction on integrated energy loads considering temperature-humidity index and coupling characteristics [J]. Integrated Intelligent Energy, 2023, 45(7): 70-77. |
[11] | LIU Yixian, WANG Yubin, YANG Qiang. High fault-tolerant distribution network state estimation method based on gated graph neural network [J]. Integrated Intelligent Energy, 2023, 45(6): 1-8. |
[12] | SUN Jian, WANG Yinwu, WU Kexin, TAO Jianlong, QIN Yu. Research and application of heat pump technology in integrated energy systems [J]. Integrated Intelligent Energy, 2023, 45(4): 1-11. |
[13] | LI Hua, LU Mingxuan, TONG Yongji, ZHONG Chongfei. Application of situational awareness technology in the safe and stable operation of new power systems [J]. Integrated Intelligent Energy, 2023, 45(3): 24-33. |
[14] | ZENG Hui, DU Yuan, LI Tao, XUE Yixun, SUN Kaiyuan, XIA Tian, SUN Hongbin. Low-carbon planning of a park-level integrated electric and heating system considering carbon trading and green certificate trading [J]. Integrated Intelligent Energy, 2023, 45(2): 22-29. |
[15] | ZHANG Jinping, ZHOU Qiang, WANG Dingmei, LI Jin, LIU Lijuan. Review on solar thermal power generation technologies and their development [J]. Integrated Intelligent Energy, 2023, 45(2): 44-52. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||