[1] |
董健, 柳亦兵, 滕伟, 等. 基于BP-Adaboost算法的风电机组叶片结冰检测[J]. 可再生能源, 2021, 39(5):632-636.
|
|
DONG Jian, LIU Yibing, TENG Wei, et al. Wind turbine blade ice detection based on BP-Adaboost algorithm[J]. Renewable Energy Resources, 2021, 39(5):632-636.
|
[2] |
RIZK P, SALEH N, YOUNES R, et al. Hyperspectral imaging applied for the detection of wind turbine blade damage and icing[J]. Remote Sensing Applications:Society and Environment, 2020,18:100291.
|
[3] |
MUNOZ C, MARQUEZ F, TOMAS J. Ice detection using thermal infrared radiometry on wind turbine blades[J]. Measurement, 2016,93:157-163.
|
[4] |
SHOJA S, BERBYUK V, BOSTROM A. Guided wave-based approach for ice detection on wind turbine blades[J]. Wind Engineering, 2018, 42(5):483-495.
|
[5] |
PATRICE R, JEAN L, RJEAN, et al. A new atmospheric icing detector based on thermally heated cylindrical probes for wind turbine applications[J]. Cold Regions Science and Technology, 2018,148:131-141.
|
[6] |
郭奕兵. 基于FBG传感和石墨烯薄膜的风机结冰监测与除冰[D]. 哈尔滨: 哈尔滨工业大学, 2018.
|
|
GUO Yibing. Graphene film combined with FBG sensor for icing monitoring and de-icing of wind turbine[D]. Harbin: Harbin Institute of Technology, 2018.
|
[7] |
李宁波, 闫涛, 李乃鹏, 等. 基于SCADA数据的风机叶片结冰检测方法[J]. 发电技术, 2018, 39(1):58-62.
doi: 10.12096/j.2096-4528.pgt.2018.010
|
|
LI Ningbo, YAN Tao, LI Naipeng, et al. Ice detection method by using SCADA data on wind turbine blades[J]. Power Generation Technology, 2018, 39(1):58-62.
doi: 10.12096/j.2096-4528.pgt.2018.010
|
[8] |
范大千, 刘博嵩, 郭鹏. 基于AdaBoost算法的多参数模型风电机组叶片结冰监测与预警研究[J]. 华电技术, 2021, 43(8):20-26.
|
|
FAN Daqian, LIU Bosong, GUO Peng. Wind turbine blades icing detection with multi-parameter models based on AdaBoost algorithm[J]. Huadian Technology, 2021, 43(8):20-26.
|
[9] |
XIAO J, LI C Y, LIU B, et al. Prediction of wind turbine blade icing fault based on selective deep ensemble model[J]. Knowledge-Based Systems, 2022,242:108290.
|
[10] |
TAO T, LIU Y Q, QIAO Y H, et al. Wind turbine blade icing diagnosis using hybrid features and Stacked-XGBoost algorithm[J]. Renewable Energy. 2021,180:1004-1013.
|
[11] |
李大中, 王超, 李颖宇. 基于XGBoost算法的风机叶片结冰状态评测[J]. 电力科学与工程, 2019, 35(9):43-48.
doi: 1672-0792(2019)09-0043-06
|
|
LI Dazhong, WANG Chao, LI Yingyu. Evaluation of fan blade icing based on XGBoost algorithm[J]. Electric Power Science and Engineering, 2019, 35(9):43-48.
doi: 1672-0792(2019)09-0043-06
|
[12] |
王金轩, 汤占军, 詹跃东, 等. 基于卷积神经网络的风机叶片结冰故障检测[J]. 计算机仿真, 2021, 38(12):85-88.
|
|
WANG Jinxuan, TANG Zhanjun, ZHAN Yuedong, et al. Fan blade icing fault detection based on convolution neural network[J]. Computer Simulation, 2021, 38(12):85-88.
|
[13] |
LI F Y, CUI H M, SU H J, et al. Icing condition prediction of wind turbine blade by using artificial neural network based on modal frequency[J]. Cold Regions Science and Technology, 2022,194:103467.
|
[14] |
CHEN T Q, GUESTRIN C. XGBoost:A scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.San Francisco,2016:785-794.
|
[15] |
LESOUPLE J, BAUDOIN C, SPIGAI M, et al. Generalized isolationforest for anomaly detection[J]. Pattern Recognition Letters, 2021,149:109-119.
|
[16] |
ZHU Q Q, QIN S J. Latent variable regression for process and quality modeling[C]// 2019 1st International Conference on Industrial Artificial Intelligence.Shenyang,2019: 1-6.
|