综合智慧能源 ›› 2024, Vol. 46 ›› Issue (12): 29-35.doi: 10.3969/j.issn.2097-0706.2024.12.004

• 控制与安全决策 • 上一篇    下一篇

基于动态潜变量回归的风电机组叶片结冰监测研究

肖碧涛(), 刘宇, 赖晓路   

  1. 国电南京自动化股份有限公司,南京 211800
  • 收稿日期:2022-05-20 修回日期:2022-10-10 出版日期:2023-08-18
  • 作者简介:肖碧涛(1978),男,高级工程师,从事新能源一体化监视控制、风电机组能效分析和故障预警等方面的研究,hustxbt@163.com
  • 基金资助:
    中国华电集团科技项目(CHDKJ19-01-79)

Wind turbine blades icing monitoring based on dynamic latent variable regression

XIAO Bitao(), LIU Yu, LAI Xiaolu   

  1. Guodian Nanjing Automation Company Limited,Nanjing 211800,China
  • Received:2022-05-20 Revised:2022-10-10 Published:2023-08-18
  • Supported by:
    China Huadian Group Technology Project(CHDKJ19-01-79)

摘要:

风电机组叶片结冰监测与预警对保障风电机组安全稳定运行具有重要意义。充分考虑结冰过程对风电机组性能累积的影响,提出一种符合机组动态运行特性的叶片结冰监测方法,从而提高风电机组叶片结冰监测准确率。通过孤立森林模型提取功率主带,为性能劣化模型的建立提供高质量的数据支撑。使用动态潜变量回归算法使质量变量在过程变量动态潜空间上的投影最大化,基于最小化回归误差提取风电机组动态运行过程输入变量和输出变量间潜在的结构化关系。采用向量自回归模型计算动态监测指标,若输出功率的监测指标越限则进行劣化告警。然后再使用孤立森林模型对劣化时段的叶尖速比和桨距角进行异常检测,若参数存在异常且环境温度小于0 ℃ 时发出叶片结冰预警。以我国西南某风场机组实际运行数据为例,验证了提出方法的有效性。

关键词: 叶片结冰监测, 故障预警, 孤立森林, 动态潜变量回归, 特征工程, 新型电力系统

Abstract:

The monitoring and warning of wind turbine blade icing is of great significance to ensure the safe and stable operation of wind turbines. Considering the accumulating effects of icing processes on the turbine performance, a wind turbine blade icing monitoring model is proposed that conforms to the dynamic operating characteristics of the unit,so as to improve the accuracy of wind turbine blade icing monitoring. The power main band is extracted by isolated forest algorithm to provide high quality data for the establishment of performance degradation model. A dynamic latent variable regression algorithm is used to maximize the projection of quality variable on the dynamic latent space, extract latent structured relations between process and quality variables in the dynamic operation of wind turbines based on minimizing regression errors. The vector auto regression model is used to calculate the dynamic monitoring indicators, and if the monitoring indicators of the output power exceed the limit, the warning of deterioration is carried out. Then the tip speed ratio and pitch angle of the degradation data are abnormally detected based on isolated forest and if the parameters are abnormal and the ambient temperature is below 0 ℃, a blade icing warning will be issued. The actual operation data of a wind turbine in southwest China is used as an example to verify the effectiveness of the method in this paper.

Key words: blade icing monitoring, fault alert, isolated forest, dynamic latent variable regression, feature engineering, new power system

中图分类号: