综合智慧能源 ›› 2025, Vol. 47 ›› Issue (6): 74-84.doi: 10.3969/j.issn.2097-0706.2025.06.008

• 源网协调 • 上一篇    下一篇

基于MOIBKA算法的电化学储能电站最优功率分配

王成1(), 邵冲2(), 何欣2(), 董海鹰1,*()   

  1. 1.兰州交通大学 新能源与动力工程学院,兰州 730070
    2.国网甘肃省电力公司,兰州 730030
  • 收稿日期:2024-06-03 修回日期:2024-10-08 出版日期:2025-06-25
  • 通讯作者: 董海鹰*(1966),男,教授,博士生导师,博士,从事电力系统运行与优化控制、新能源发电等方面的研究,hydong@mail.lzjtu.cn
  • 作者简介:王成(1999),男,硕士生,从事储能电站功率控制方面的研究,weijinwangcheng@163.com
    邵冲(1984),男,高级工程师,博士,从事电力系统分析研究,shaoch_dkzx@gs.sgcc.com.cn
    何欣(1985),女,高级工程师,硕士,从事电网运行技术研究,122468126@qq.com
  • 基金资助:
    甘肃省科技重大专项(23ZDGA005)

Optimal power allocation for electrochemical energy storage power stations based on MOIBKA algorithm

WANG Cheng1(), SHAO Chong2(), HE Xin2(), DONG Haiying1,*()   

  1. 1. School of New Energy and Power Engineering,Lanzhou Jiaotong University,Lanzhou 730070,China
    2. State Grid Gansu Electric Power Company,Lanzhou 730030,China
  • Received:2024-06-03 Revised:2024-10-08 Published:2025-06-25
  • Supported by:
    Gansu Province Major Science and Technology Project(23ZDGA005)

摘要:

针对多种因素影响下电化学储能电站的功率分配问题,提出一种基于改进多目标黑翅鸢优化算法 (MOIBKA)的电化学储能电站最优功率分配策略。建立电化学储能电站的拓扑结构,并提出了电站运行的3个评价指标。在储能电站传统功率分配模型的基础上建立包含储能电站总运行成本最低、储能单元健康状态损失最小、荷电状态(SOC)一致性最好的多目标功率分配模型,并通过多策略MOIBKA进行求解。通过对比仿真分析以及运行评价指标证明了所提策略可以有效减少储能单元充放电次数,降低储能单元的健康状态损失以及提高储能单元SOC一致性,实现了储能电站的最优功率分配。

关键词: 新型电力系统, 电化学储能电站, 功率分配, 多目标优化, 黑翅鸢算法, 评价指标, 荷电状态, 健康状态损失

Abstract:

To address the power allocation issue of electrochemical energy storage stations under the influence of multiple factors,an optimal power allocation strategy for electrochemical energy storage power stations based on the multi-objective improved black-winged kite algorithm (MOIBKA) is proposed. The topology of the electrochemical energy storage power station is established,and three evaluation indicators for the operation of the power station are proposed. Based on the traditional power allocation model for energy storage stations,a multi-objective power allocation model is established,aiming to achieve the lowest total operating cost of energy storage power stations,the smallest state of health loss of energy storage units,and the best state of charge (SOC) consistency. The model is solved using the MOIBKA through multiple strategies. Comparative simulation analysis and operational evaluation indicators prove that the proposed strategy could effectively reduce the number of charging and discharging cycles and the state of health loss of energy storage units while improving SOC consistency. This achieves optimal power allocation for energy storage power stations.

Key words: new power system, electrochemical energy storage power station, power allocation, multi-objective optimization, black-winged kite algorithm, evaluation indicator, state of charge, state of health loss

中图分类号: