综合智慧能源 ›› 2025, Vol. 47 ›› Issue (6): 37-46.doi: 10.3969/j.issn.2097-0706.2025.06.005
收稿日期:
2024-11-05
修回日期:
2025-02-18
出版日期:
2025-06-25
作者简介:
程先龙(1982),男,工程师,从事电网调度运行方面的研究,2522763567@qq.com。
基金资助:
CHENG Xianlong(), MA Yun, HAN Junfeng, MO Ying, GAO Yan
Received:
2024-11-05
Revised:
2025-02-18
Published:
2025-06-25
Supported by:
摘要:
由于传统化石能源的不可再生性和污染日益凸显,新型清洁能源的研究和应用越来越深入、广泛,其中风能发电在电力系统的占比显著增长。风能的间歇性和随机性提高了含风电场电力系统经济调度问题的解决难度。针对这一复杂问题,构建了一个综合考虑经济成本和环境成本的含风电场电力系统经济调度模型。该模型以提高电网调度经济性和环保性为目标,并纳入系统负荷功率平衡和机组出力约束作为约束条件。此外,提出经过Tent混沌映射和自适应权重改进的多目标改进非洲秃鹫优化算法(MOIAVOA)以处理复杂调度问题。对经调整后的IEEE 30节点系统进行了针对不同目标函数及运行状态的仿真测试,以低风电渗透低负荷的情况为例,MOIAVOA的折中解得分相较于多目标粒子群优化算法(MOPSO)、非支配排序遗传算法(NSGA)、多目标灰狼优化算法(MOGWO)、多目标原子轨道搜索算法(MOAOS)和多目标非洲秃鹫优化算法(MOAVOA)分别提高了59.105 6%,88.451 8%,37.349 2%,10.147 7%,12.700 3%。仿真结果证明了含风电场电力系统经济调度模型和MOIAVOA在实际电力系统中的可行性与适用性。
中图分类号:
程先龙, 马云, 韩军峰, 莫莹, 高艳. 基于改进非洲秃鹫优化算法的含风电场电力系统经济调度研究[J]. 综合智慧能源, 2025, 47(6): 37-46.
CHENG Xianlong, MA Yun, HAN Junfeng, MO Ying, GAO Yan. Research on economic scheduling of power systems with wind farms based on improved African vulture optimization algorithm[J]. Integrated Intelligent Energy, 2025, 47(6): 37-46.
表1
不同运行目标下各算法折中解
运行目标 | 优化算法 | 经济成本/万元 | 污染物排放/t | 损耗/MW | 功率平衡情况/MW |
---|---|---|---|---|---|
1 | MOPSO | 64.237 7 | 4.818 8 | 224.003 1 | 4.55E-13 |
NSGA | 64.317 7 | 4.774 0 | 232.973 8 | 2.22E-12 | |
MOGWO | 64.236 3 | 4.814 8 | 223.665 9 | -5.12E-13 | |
MOAOS | 64.261 8 | 4.644 3 | 229.917 7 | -3.32E-3 | |
MOAVOA | 64.246 1 | 4.700 4 | 224.092 5 | 2.56E-12 | |
MOIAVOA | 64.250 5 | 4.665 0 | 224.857 9 | 1.59E-12 | |
2 | MOPSO | 65.800 0 | 8.647 0 | 170.526 8 | -1.07E-4 |
NSGA | 67.244 7 | 8.495 8 | 168.366 0 | 2.88E-4 | |
MOGWO | 69.207 8 | 8.666 7 | 170.670 5 | -3.62E-4 | |
MOAOS | 65.858 2 | 8.876 8 | 170.192 8 | 1.64 E-4 | |
MOAVOA | 65.575 0 | 8.960 5 | 171.409 2 | -4.06E-4 | |
MOIAVOA | 65.573 6 | 8.410 3 | 171.063 3 | -1.88E-4 |
表2
不同运行目标下各算法折中解得分
运行目标 | 优化算法 | 折中解得分 | 平均得分 | |
---|---|---|---|---|
熵权法 | TOPSIS法 | |||
1 | MOPSO | 0.487 8 | 0.493 1 | 0.490 5 |
NSGA | 0.339 1 | 0.119 9 | 0.229 5 | |
MOGWO | 0.505 3 | 0.502 9 | 0.504 1 | |
MOAOS | 0.698 0 | 0.502 4 | 0.600 2 | |
MOAVOA | 0.734 7 | 0.580 5 | 0.657 6 | |
MOIAVOA | 0.788 9 | 0.591 2 | 0.690 0 | |
2 | MOPSO | 0.625 7 | 0.465 9 | 0.545 8 |
NSGA | 0.693 2 | 0.560 2 | 0.626 7 | |
MOGWO | 0.403 6 | 0.259 9 | 0.331 8 | |
MOAOS | 0.484 9 | 0.413 0 | 0.448 9 | |
MOAVOA | 0.415 8 | 0.365 9 | 0.390 8 | |
MOIAVOA | 0.775 7 | 0.515 0 | 0.645 3 |
表3
普通风电渗透普通负荷下各算法折中解
优化算法 | 经济成本/万元 | 污染物排放/t | 损耗/MW | 功率平衡情况/MW | 得分 |
---|---|---|---|---|---|
MOPSO | 64.237 7 | 4.818 8 | 224.003 1 | 4.55E-13 | 0.487 8 |
NSGA | 64.317 7 | 4.774 0 | 232.973 8 | 2.22E-12 | 0.339 1 |
MOGWO | 64.236 3 | 4.814 8 | 223.665 9 | -5.12E-13 | 0.505 3 |
MOAOS | 64.261 7 | 4.644 3 | 229.917 7 | -3.32E-3 | 0.698 0 |
MOAVOA | 64.246 1 | 4.700 4 | 224.092 5 | 2.56E-12 | 0.734 7 |
MOIAVOA | 64.250 5 | 4.665 0 | 224.857 9 | 1.59E-12 | 0.788 9 |
表4
高风电渗透轻/重负荷下各算法折中解
优化算法 | 经济成本/万元 | 污染物排放/t | 损耗/MW | 功率平衡情况/MW | 得分 |
---|---|---|---|---|---|
MOPSO | 416.353 9/302.722 5 | 3.627 9/6.954 4 | 155.807 6/320.150 0 | 1.11E-12/-1.14E-12 | 0.672 8/0.522 5 |
NSGA | 416.196 7/302.773 0 | 3.615 4/6.871 3 | 154.915 6/344.102 4 | -2.84E-13/-3.69E-12 | 0.768 2/0.388 8 |
MOGWO | 416.966 8/302.723 3 | 3.636 7/6.934 4 | 159.642 8/319.437 4 | -9.91E-12/-3.41E-12 | 0.424 0/0.545 3 |
MOAOS | 41.642 9/302.748 3 | 3.598 5/6.548 0 | 155.568 3/324.748 7 | 4.80E-12/6.59E-12 | 0.789 4/0.824 5 |
MOAVOA | 416.227 3/302.729 8 | 3.647 3/6.682 3 | 154.256 1/320.958 5 | 3.13E-13/-3.92E-12 | 0.689 4/0.744 0 |
MOIAVOA | 416.569 8/302.742 8 | 3.580 9/6.541 8 | 154.239 4/323.265 3 | 3.98E-13/-4.04E-12 | 0.921 6/0.842 3 |
表5
低风电渗透轻/高负荷下各算法折中解
优化算法 | 经济成本/万元 | 污染物排放/t | 损耗/MW | 功率平衡情况/MW | 得分 |
---|---|---|---|---|---|
MOPSO | 420.448 9/306.137 3 | 3.722 8/8.014 7 | 113.165 2/296.444 6 | 1.75E-12/1.14E-12 | 0.546 3/0.596 9 |
NSGA | 420.497 7/306.297 5 | 3.702 9/7.940 7 | 114.785 8/319.281 6 | -4.30E-12/4.43E-12 | 0.461 2/0.434 8 |
MOGWO | 420.467 0/306.137 2 | 3.718 2/8.040 8 | 112.613 2/296.168 4 | 9.52E-13/2.73E-12 | 0.632 8/0.581 7 |
MOAOS | 420.544 3/306.152 1 | 3.685 4/7.617 5 | 112.703 4/298.753 2 | -4.41E-13/5.68E-13 | 0.789 1/0.846 6 |
MOAVOA | 420.456 2/306.140 7 | 3.682 7/7.837 6 | 113.004 5/298.321 9 | 2.60E-12/5.12E-12 | 0.771 2/0.700 4 |
MOIAVOA | 420.453 1/306.147 8 | 3.679 6/7.755 0 | 112.291 6/299.277 5 | -1.56E-13/1.71E-13 | 0.869 2/0.749 0 |
[1] | 朱彤. 气候变化、能源转型与新型能源安全[J]. 中国电力企业管理, 2024(16): 50-55. |
ZHU Tong. Climate change, energy transformation and new energy security[J]. China Power Enterprise Management, 2024(16): 50-55. | |
[2] | 翟昊岩. 新能源经济现状与发展策略[J]. 老字号品牌营销, 2024(10): 43-45. |
ZHAI Haoyan. Present situation and development strategy of new energy economy[J]. China Time-honored Brand, 2024(10): 43-45. | |
[3] | 龚钢军, 王路遥, 常卓越, 等. 基于能源枢纽的综合能源信息物理系统安全防护架构研究[J/OL]. 综合智慧能源, 1-8 (2023-07-03)[2025-01-03]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=SLDL20230630006&dbname=CJFD&dbcode=CJFQ. |
GONG Gangjun, WANG Luyao, CHANG Zhuoyue, et al. Research on security protection framework of comprehensive energy cyber-physical systems based on energy hub[J/OL]. China Industrial Economics, 1-8 (2023-07-03)[2025-01-03]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=SLDL20230630006&dbname=CJFD&dbcode=CJFQ. | |
[4] | MOSTAFA M H, RYAD A K, HUSSIEN S A, et al. Data-driven stochastic dynamic economic dispatch for combined heat and power systems using particle swarm optimization[J]. Energy Reports, 2024, 12: 4555-4567. |
[5] | 王京波, 李嗣, 杨洪明, 等. 博弈论在含风电场电力系统经济调度中的应用[J]. 电工技术, 2024(12): 27-29. |
WANG Jingbo, LI Si, YANG Hongming, et al. Application of game theory in economic dispatch of power system integrating wind generations[J]. Electric Engineering, 2024(12): 27-29. | |
[6] | BHAVSAR S, PITCHUMANI R, MAACK J, et al. Stochastic economic dispatch of wind power under uncertainty using clustering-based extreme scenarios[J]. Electric Power Systems Research, 2024, 229: 110158. |
[7] | YU G Z, ZHANG Z L, CUI G A, et al. Low-carbon economic dispatching strategy based on feasible region of cooperative interaction between wind-storage system and carbon capture power plant[J]. Renewable Energy, 2024, 228: 120706. |
[8] | ALI A, ASLAM S, KEERIO M U, et al. Optimal solution of multiobjective stable environmental economic power dispatch problem considering probabilistic wind and solar PV generation[J]. Heliyon, 2024, 10(20): e39041. |
[9] | WANG C H, MA Y, XIE J J, et al. Multi-objective energy dispatch with deep reinforcement learning for wind-solar-thermal-storage hybrid systems[J]. Journal of Energy Storage, 2025, 105: 114635. |
[10] | 徐胜, 郭萌, 吴杨, 等. 基于多变异集成差分进化的电力经济调度方法[J]. 自动化技术与应用, 2024, 43(12): 8-11, 54. |
XU Sheng, GUO Meng, WU Yang, et al. Electric power economic dispatch method based on multi mutation ensemble differential evolution[J]. Techniques of Automation and Applications, 2024, 43(12): 8-11, 54. | |
[11] | ZHANG X X, WU J K, SUN Y H, PENG Q J. Capacity allocation optimization of hybrid energy storage systems considering fluctuation control on offshore wind power[J]. Integrated Intelligent Energy, 2024, 46(6): 54-65. |
[12] | 田壁源, 戚红艳, 张新燕, 等. 基于MO-APSO的含风电场电力系统动态环境经济调度[J]. 电力系统保护与控制, 2019, 47(24): 57-64. |
TIAN Biyuan, QI Hongyan, ZHANG Xinyan, et al. Dynamic environmental economic dispatch of power system containing wind farms based on MO-APSO[J]. Power System Protection and Control, 2019, 47(24): 57-64. | |
[13] | 刘虹伶, 时维国. 基于灰狼优化的改进粒子群算法求解环境经济调度问题[J]. 电机与控制应用, 2024, 51(11): 97-109. |
LIU Hongling, SHI Weiguo. Solving environmental economic dispatch problem using an improved particle swarm optimization algorithm based on grey wolf optimization[J]. Electric Machines and Control Application, 2024, 51(11): 97-109. | |
[14] | QU L N, JI B X, LIM M K, et al. A hybrid static economic dispatch optimization model with wind energy: Improved pathfinder optimization model[J]. Energy Reports, 2023, 10: 3711-3723. |
[15] | 郝晓弘, 何侃. 基于NSGA-Ⅱ算法的含风电场的电力系统动态经济调度[J]. 电子设计工程, 2017, 25(11): 170-175. |
HAO Xiaohong, HE Kan. Dynamic economic dispatch considering wind power penetration based on NSGA-Ⅱ[J]. Electronic Design Engineering, 2017, 25(11): 170-175. | |
[16] | 江岳文, 陈冲, 温步瀛. 基于随机模拟粒子群算法的含风电场电力系统经济调度[J]. 电工电能新技术, 2007, 26(3): 37-41. |
JIANG Yuewen, CHEN Chong, WEN Buying. Economic dispatch based on particle swarm optimization of stochastic simulation in wind power integrated system[J]. Advanced Technology of Electrical Engineering and Energy, 2007, 26(3): 37-41. | |
[17] | 蒋承刚, 熊国江, 陈锦龙. 基于改进非支配多目标差分进化算法的含风电-小水电电力系统动态环境经济调度[J]. 电力科学与工程, 2021, 37(8): 1-9. |
JIANG Chenggang, XIONG Guojiang, CHEN Jinlong. Dynamic economic emission dispatching of power systems with wind power and small hydropower based on improved non-dominated multi-objective differential evolutionary algorithm[J]. Electric Power Science and Engineering, 2021, 37(8): 1-9. | |
[18] | 杨美春. 基于改进粒子群算法的电力系统经济调度研究[J]. 中国新技术新产品, 2025(3): 124-126. |
YANG Meichun. Research on economic dispatching of power system based on improved particle swarm optimization algorithm[J]. New Technology and New Products of China, 2025(3): 124-126. | |
[19] | 张郁, 苑波, 黄石成, 等. 考虑高比例可再生能源接入的有源配电网经济调度策略研究[J]. 电测与仪表, 2025, 62(1): 158-166. |
ZHANG Yu, YUAN Bo, HUANG Shicheng, et al. Research on economic dispatching strategy for active distribution network considering high penetration of renewable energy source[J]. Electrical Measurement & Instrumentation, 2025, 62(1): 158-166. | |
[20] | 张磊, 向紫藤, 余朋军, 等. 基于绿色证书交易机制的含风电场电力系统动态环境经济调度[J]. 智慧电力, 2021, 49(10): 75-82. |
ZHANG Lei, XIANG Ziteng, YU Pengjun, et al. Dynamic environmental economic dispatch of power system with wind farm based on green certificate transaction mechanisms[J]. Smart Power, 2021, 49(10): 75-82. | |
[21] | 王隔霞, 王军平, 孙明杨, 等. 基于改进蚱蜢算法的微电网多目标环境经济调度问题[J]. 上海电机学院学报, 2024, 27(4): 219-223, 236. |
WANG Gexia, WANG Junping, SUN Mingyang, et al. The multi-objective economic environment dispatch problem of microgrid based on improved grasshopper optimization algorithm[J]. Journal of Shanghai Dianji University, 2024, 27(4): 219-223, 236. | |
[22] | 张子泳, 仉梦林, 李莎. 基于多目标粒子群算法的电力系统环境经济调度研究[J]. 电力系统保护与控制, 2017, 45(10): 1-10. |
ZHANG Ziyong, ZHANG Menglin, LI Sha. Environmental/economic power dispatch based on multi-objective particle swarm constraint optimization algorithm[J]. Power System Protection and Control, 2017, 45(10): 1-10. | |
[23] | 姜文, 程叶霞, 严正, 等. 考虑可靠性约束的含风电场电力系统动态经济调度[J]. 电力自动化设备, 2013, 33(7): 27-33. |
JIANG Wen, CHENG Yexia, YAN Zheng, et al. Reliability-constrained dynamic economic dispatch of power system with wind farms[J]. Electric Power Automation Equipment, 2013, 33(7): 27-33. | |
[24] | 蒋慧, 戴文俊. 基于CQPSO算法的含风电场电力系统经济调度研究[J]. 井冈山大学学报(自然科学版), 2021, 42(1): 76-81. |
JIANG Hui, DAI Wenjun. Research of economic dispatch of power system with wind farms based on chaos quantum particle swarm optimization algorithm[J]. Journal of Jinggangshan University (Natural Science), 2021, 42(1): 76-81. | |
[25] | 李德英, 陈希祥, 陈钢, 等. 风电场穿透功率风险下基于改进NSGA-2的动态经济调度方法[J]. 可再生能源, 2022, 40(10): 1365-1371. |
LI Deying, CHEN Xixiang, CHEN Gang, et al. Dynamic economic dispatch considering wind farm penetration risk based improved NSGA-2 algorithm[J]. Renewable Energy Resources, 2022, 40(10): 1365-1371. | |
[26] | ABDOLLAHZADEH B, GHAREHCHOPOGH F S, MIRJALILI S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers and Industrial Engineering, 2021, 158: 107408. |
[27] | 吴锋. 基于改进非洲秃鹫优化算法的电动汽车充电站选址优化研究[D]. 济南: 山东大学, 2022. |
WU Feng. Research on location optimization of electric vehicle charging station based on improved African vulture optimization algorithm[D]. Ji'nan: Shandong University, 2022. | |
[28] | 张仲秀, 徐雅, 孙大明, 等. 基于改进AVOA的小型自由活塞斯特林制冷机控制算法研究[J]. 低温工程, 2024(4): 86-94. |
ZHANG Zhongxiu, XU Ya, SUN Daming, et al. Research on control algorithm of small free piston Stirling cryocooler based on modified AVOA[J]. Cryogenics, 2024(4): 86-94. | |
[29] | 申晋祥, 鲍美英, 张景安, 等. 混沌自适应非洲秃鹫优化算法训练多层感知器[J]. 计算机工程与设计, 2024, 45(2): 546-552. |
SHEN Jinxiang, BAO Meiying, ZHANG Jing'an, et al. Chaotic adaptive African vulture optimization algorithm for training multilayer perceptron[J]. Computer Engineering and Design, 2024, 45(2): 546-552. | |
[30] | 程先龙, 王川, 张杰, 等. 基于多目标原子轨道搜索算法的风电场集群最优经济调度[J]. 电力系统保护与控制, 2024, 52(6): 77-87. |
CHENG Xianlong, WANG Chuan, ZHANG Jie, et al. Optimal economic dispatch of wind farm clusters based on multi-objective atomic orbital search[J]. Power System Protection and Control, 2024, 52(6): 77-87. | |
[31] | 杨晓燕, 谢满承, 郭小璇, 等. 基于改进原子轨道搜索算法优化随机森林分类器的光伏系统故障诊断[J]. 综合智慧能源, 2023, 45(10): 53-60. |
YANG Xiaoyan, XIE Mancheng, GUO Xiaoxuan, et al. PV system fault diagnosis based on random forest classifier optimized by improved atomic orbital search algorithm[J]. Integrated Intelligent Energy, 2023, 45(10): 53-60. |
[1] | 王成, 邵冲, 何欣, 董海鹰. 基于MOIBKA算法的电化学储能电站最优功率分配[J]. 综合智慧能源, 2025, 47(6): 74-84. |
[2] | 张冬冬, 单琳珂, 刘天皓. 人工智能技术在风力与光伏发电数据挖掘及功率预测中的应用综述[J]. 综合智慧能源, 2025, 47(3): 32-46. |
[3] | 胡杰, 战巧蓉, 田德硕, 李文伟. 考虑隐私保护的虚拟电厂经济调度策略[J]. 综合智慧能源, 2025, 47(1): 79-87. |
[4] | 樊颜搏, 熊亚选, 李想, 田曦, 杨洋. 基于遗传算法的建筑用能多目标优化应用进展[J]. 综合智慧能源, 2024, 46(9): 69-85. |
[5] | 陈勇, 肖雷鸣, 王井南, 吴健. 基于场景扩充的低碳综合能源系统高可靠性容量规划方法[J]. 综合智慧能源, 2024, 46(4): 24-33. |
[6] | 汤梓涵, 王帅杰, 鞠振河, 雷志奇. 光伏/光热耦合空气源热泵系统性能优化[J]. 综合智慧能源, 2024, 46(4): 34-41. |
[7] | 钟永洁, 王紫东, 左建勋, 王常青, 李靖霞, 纪陵. 计及多时段尺度与地域分层的多能互补系统经济调度[J]. 综合智慧能源, 2024, 46(4): 52-59. |
[8] | 孙健, 张云帆, 蔡潇龙, 刘鼎群. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19. |
[9] | 陆文甜. 基于增量交换的主动配电网分布式多目标最优潮流[J]. 综合智慧能源, 2024, 46(2): 43-48. |
[10] | 甄箫斐, 李尚娥, 张永恒, 焦若楠, 吴文兵. 西北地区近零能耗建筑围护结构多目标优化研究[J]. 综合智慧能源, 2024, 46(12): 81-90. |
[11] | 王海鸣, 张润之, 周家辉, 徐钢, 耿嘉曦. 离网式风光互补制氢合成绿氨系统容量配置优化分析[J]. 综合智慧能源, 2024, 46(11): 73-82. |
[12] | 白章, 郝文杰, 李琦, 郝洪亮, 温彩凤, 郭苏, 黄贤坤. 基于全生命周期评价的风光制氢综合系统容量配置优化研究[J]. 综合智慧能源, 2024, 46(10): 1-11. |
[13] | 张力, 金立, 任炬光, 刘小兵. 计及气象因素与分时电价影响的综合能源系统负荷调控策略研究[J]. 综合智慧能源, 2024, 46(1): 18-27. |
[14] | 包义辛, 徐椤赟, 杨强. 基于MADDPG算法的建筑群柔性负荷优化调控方法[J]. 综合智慧能源, 2023, 45(7): 61-69. |
[15] | 喻小宝, 赵雯婧, 孙艺新. 计及双重不确定性的综合能源系统运行优化模型研究[J]. 综合智慧能源, 2023, 45(10): 10-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||