综合智慧能源 ›› 2025, Vol. 47 ›› Issue (6): 37-46.doi: 10.3969/j.issn.2097-0706.2025.06.005

• 新能源与智能算法 • 上一篇    下一篇

基于改进非洲秃鹫优化算法的含风电场电力系统经济调度研究

程先龙(), 马云, 韩军峰, 莫莹, 高艳   

  1. 云南电网有限责任公司 红河供电局,云南 红河 661100
  • 收稿日期:2024-11-05 修回日期:2025-02-18 出版日期:2025-06-25
  • 作者简介:程先龙(1982),男,工程师,从事电网调度运行方面的研究,2522763567@qq.com
  • 基金资助:
    云南电网科技项目(YNKJXM2022201)

Research on economic scheduling of power systems with wind farms based on improved African vulture optimization algorithm

CHENG Xianlong(), MA Yun, HAN Junfeng, MO Ying, GAO Yan   

  1. Honghe Power Supply Bureau of Yunnan Power Grid Company Limited,Honghe 661100,China
  • Received:2024-11-05 Revised:2025-02-18 Published:2025-06-25
  • Supported by:
    Yunnan Power Grid Science and Technology Project(YNKJXM2022201)

摘要:

由于传统化石能源的不可再生性和污染日益凸显,新型清洁能源的研究和应用越来越深入、广泛,其中风能发电在电力系统的占比显著增长。风能的间歇性和随机性提高了含风电场电力系统经济调度问题的解决难度。针对这一复杂问题,构建了一个综合考虑经济成本和环境成本的含风电场电力系统经济调度模型。该模型以提高电网调度经济性和环保性为目标,并纳入系统负荷功率平衡和机组出力约束作为约束条件。此外,提出经过Tent混沌映射和自适应权重改进的多目标改进非洲秃鹫优化算法(MOIAVOA)以处理复杂调度问题。对经调整后的IEEE 30节点系统进行了针对不同目标函数及运行状态的仿真测试,以低风电渗透低负荷的情况为例,MOIAVOA的折中解得分相较于多目标粒子群优化算法(MOPSO)、非支配排序遗传算法(NSGA)、多目标灰狼优化算法(MOGWO)、多目标原子轨道搜索算法(MOAOS)和多目标非洲秃鹫优化算法(MOAVOA)分别提高了59.105 6%,88.451 8%,37.349 2%,10.147 7%,12.700 3%。仿真结果证明了含风电场电力系统经济调度模型和MOIAVOA在实际电力系统中的可行性与适用性。

关键词: 风力发电, 多目标优化, 经济调度, 非洲秃鹫优化算法

Abstract:

Due to the increasingly prominent non-renewability and polluting nature of traditional fossil fuels,the research and application of new types of clean energy have become more extensive and in-depth,with wind power generation accounting for a growing share in power systems. However,the intermittency and randomness of wind energy increase the difficulty of solving the economic scheduling problem in power systems with wind farms. To address this complex issue,an economic scheduling model for power systems with wind farms was established,considering both economic and environmental costs. The model aimed to improve both the economic efficiency and environmental sustainability of power grid scheduling,incorporating system load-power balance and unit output constraints as key constraints. Moreover,a multi-objective improved African vulture optimization algorithm was proposed,which integrated Tent chaos mapping and adaptive weight strategies to effectively tackle complex scheduling problems. Simulation experiments were conducted on the modified IEEE 30 system under different objective functions and operation statuses. Taking the low wind power penetration and low load scenario as an example,the compromise solution scores using the multi-objective improved African vulture optimization algorithm improved by 59.105 6%,88.451 8%,37.349 2%,10.147 7%,and 12.700 3% compared to the benchmark algorithms multi-objective particle swarm optimization,non-dominated sorting genetic algorithm,multi-objective grey wolf optimization,multi-objective atomic orbital search,and multi-objective African vulture optimization algorithm,respectively. the simulation results confirmed the feasibility and applicability of the proposed economic scheduling model and multi-objective improved Arican vulture optimization algorithm in real-world power systems.

Key words: wind power generation, multi-objective optimization, economic scheduling, African vulture optimization algorithm

中图分类号: