综合智慧能源 ›› 2024, Vol. 46 ›› Issue (12): 81-90.doi: 10.3969/j.issn.2097-0706.2024.12.010
• 优化运行与控制 • 上一篇
甄箫斐1,2(), 李尚娥3, 张永恒1,2, 焦若楠1, 吴文兵1
收稿日期:
2024-10-10
修回日期:
2024-11-04
出版日期:
2024-12-25
作者简介:
甄箫斐(1987),男,副教授,博士,从事可再生能源方面的研究,zxf283386515@163.com。
基金资助:
ZHEN Xiaofei1,2(), LI Shang'e3, ZHANG Yongheng1,2, JIAO Ruonan1, WU Wenbing1
Received:
2024-10-10
Revised:
2024-11-04
Published:
2024-12-25
Supported by:
摘要:
针对近零能耗建筑投资成本高以及西北地区近零能耗建筑建设水平参差不齐等问题,以某既有近零能耗建筑为研究对象,综合考虑能耗、成本、碳排放及室内舒适度等多项建筑性能指标,采用试验研究和TRNSYS仿真模拟相结合的方法,从能耗、成本、碳排放和室内舒适度等多个性能指标出发,对围护结构进行优化。研究结果表明:在最优围护结构组合方案,即天花板和外墙保温材料为聚苯板和聚氨酯,外墙、天花板保温层厚度分别为100,110 mm,西向、南向和北向窗墙比分别为0.05,0.28,0.30,外窗遮阳系数为0.38时,建筑成本较原始方案降低了9.8%,碳排放、能耗以及预测平均评价指数较原始方案分别提升了9.7%,12.1%,10.3%,不满意度占比降低了28.4%,建筑综合性能得以提升。
中图分类号:
甄箫斐, 李尚娥, 张永恒, 焦若楠, 吴文兵. 西北地区近零能耗建筑围护结构多目标优化研究[J]. 综合智慧能源, 2024, 46(12): 81-90.
ZHEN Xiaofei, LI Shang'e, ZHANG Yongheng, JIAO Ruonan, WU Wenbing. Research on multi-objective optimization of envelope structures for nearly zero-energy buildings in Northwest China[J]. Integrated Intelligent Energy, 2024, 46(12): 81-90.
[1] | KHALID A H, STUART H, ABOUELWAFA A M. Occurrence, human exposure, and risk of microplastics in the indoor environment[J]. Environmental Science Processes & Impacts, 2021, 24(1): D1EM00301A. |
[2] | 郑立红, 周志华, 郭而郛, 等. 双碳背景下建筑碳排放动态基准线研究[J]. 制冷与空调(四川), 2022, 36(2):305-310,336. |
ZHENG Lihong, ZHOU Zhihua, GUO Erfu, et al. Research on dynamic baseline of building carbon emission under double carbon background[J]. Refrigeration and Air Conditioning, 2022, 36(2):305-310,336. | |
[3] | WASHIM A M, FIRDAUS M Z M, MD H, et al. Global prospects, advance technologies and policies of energy-saving and sustainable building systems: A review[J]. Sustainability, 2022, 14(3): 1316. |
[4] |
阳栋, 李晃, 李水生, 等. 建筑业减碳途径及实施策略[J]. 科技导报, 2022, 40(11): 105-110.
doi: 10.3981/j.issn.1000-7857.2022.11.012 |
YANG Dong, LI Huang, LI Shuisheng, et al. On the ways and implementation strategies of carbon reduction in China's construction industry[J]. Science & Technology Review, 2022, 40(11): 105-110. | |
[5] |
樊颜搏, 熊亚选, 李想, 等. 基于遗传算法的建筑用能多目标优化应用进展[J]. 综合智慧能源, 2024, 46(9): 69-85.
doi: 10.3969/j.issn.2097-0706.2024.09.009 |
FAN Yanbo, XIONG Yaxuan, LI Xiang, et al. Advancement in multi-objective optimization for building energy use based on genetic algorithms[J]. Integrated Intelligent Energy, 2024, 46(9): 69-85.
doi: 10.3969/j.issn.2097-0706.2024.09.009 |
|
[6] |
林漫华, 张婉娜, 郑荣宝, 等. 广州市绿色建筑的时空演变及影响因素分析[J]. 热带地理, 2023, 43(9):1823-1834.
doi: 10.13284/j.cnki.rddl.003737 |
LIN Manhua, ZHANG Wanna, ZHENG Rongbao. Spatial and temporal evolution and influencing factors of green buildings in Guangzhou[J]. Tropical Geography, 2023, 43(9): 1823-1834.
doi: 10.13284/j.cnki.rddl.003737 |
|
[7] | 赵泽锋, 袁媛, 李振兴, 等. 近零能耗建筑发展简述[J]. 绿色建筑, 2024, 16(1): 7-9, 24. |
ZHAO Zefeng, YUAN Yuan, LI Zhenxing, et al. A brief overview of the development of near-zero energy buildings[J]. Green Building, 2024, 16(1): 7-9, 24. | |
[8] |
胡开永, 刘峰, 吴秀杰, 等. 基于Trnsys能耗预测的村镇建筑不同供能方式碳-经济分析[J]. 综合智慧能源, 2023, 45(8): 64-71.
doi: 10.3969/j.issn.2097-0706.2023.08.008 |
HU Kaiyong, LIU Feng, WU Xiujie, et al. Carbon-economy analysis on energy supply methods for rural buildings based on Trnsys energy consumption prediction[J]. Integrated Intelligent Energy, 2023, 45(8): 64-71.
doi: 10.3969/j.issn.2097-0706.2023.08.008 |
|
[9] |
秦力, 刘佳楠, 史巍. 寒冷地区村镇附加阳光间住宅围护结构能耗实测分析[J]. 太阳能学报, 2022, 43(4): 264-270.
doi: 10.19912/j.0254-0096.tynxb.2020-0715 |
QIN Li, LIU Jianan, SHI Wei. Test analyses on energy consumption of rural residential building envelope with attached sunspace in cold region[J]. Acta Energiae Solaris Sinica, 2022, 43(4): 264-270.
doi: 10.19912/j.0254-0096.tynxb.2020-0715 |
|
[10] | RAVISHANKAR E, BOOTH R E, SARAVITZ C, et al. Achieving net zero energy greenhouses by integrating semitransparent organic solar cells[J]. Joule, 2020, 4(2): 490-506. |
[11] |
褚于颉, 陈柳, 邓文杰, 等. 太阳能驱动转轮空调在近零能耗建筑中的应用[J]. 太阳能学报, 2023, 44(4): 464-471.
doi: 10.19912/j.0254-0096.tynxb.2021-1390 |
CHU Yujie, CHEN Liu, DENG Wenjie, et al. Application of solar driven desiccant cooling system in near zero energy buildings[J]. Acta Energiae Solaris Sinica, 2023, 44(4): 464-471.
doi: 10.19912/j.0254-0096.tynxb.2021-1390 |
|
[12] | 马文生, 郭强, 黄霆鹤, 等. 严寒地区近零能耗建筑太阳能新风预热系统供暖效果实测研究[J]. 太阳能学报, 2020, 41(6): 370-374. |
MA Wensheng, GUO Qiang, HUANG Tinghe, et al. Experimental study on solar preheating system used in nearly-zero-energy building in severe cold area[J]. Acta Energiae Solaris Sinica, 2020, 41(6): 370-374. | |
[13] | NASROLLAH N. Comprehensive building envelope optimization: Improving energy, daylight, and thermal comfort performance of the dwelling unit[J]. Journal of Building Engineering, 2021, 44: 103418. |
[14] | 桑国臣, 陈得勇, 韩艳, 等. 双热扰下节能墙体对室内热环境的动态影响[J]. 太阳能学报, 2017, 38(1): 164-171. |
SANG Guochen, CHEN Deyong, HAN Yan, et al. Influence of energy-saving wall on indoor thermal environment under the condition of bilateral thermal disturbance[J]. Acta Energiae Solaris Sinica, 2017, 38(1): 164-171. | |
[15] | ACAR U, KASKA O, TOKGOZ N. Multi-objective optimization of building envelope components at the preliminary design stage for residential buildings in Turkey[J]. Journal of Building Engineering, 2021, 42: 102499. |
[16] | 住房和城乡建设部. 近零能耗建筑技术标准: GB/T 51350 —2019[S]. 北京: 中国建筑工业出版社. |
[17] | 徐权, 冯乐涛, 高楠, 等. 基于不同光资源数据的光伏发电小时数模拟分析[J]. 能源与节能, 2023(8): 18-22. |
XU Quan, FENG Letao, GAO Nan, et al. Simulation analysis of photovoltaic power generation hours based on different optical resource data[J]. Energy and Energy Conservation, 2023(8): 18-22. | |
[18] | 方宇龙, 张小松, 刘畅. 干式地板辐射非全覆盖导热板式末端供暖系统试验研究[J]. 东南大学学报(自然科学版), 2022, 52(6):1104-1113. |
FANG Yulong, ZHANG Xiaosong, LIU Chang. Experimental study of lightweight radiant floor heating system with non-full-coverage heat-conducting plate[J]. Journal of Southeast University (Natural Science Edition), 2022, 52(6):1104-1113. | |
[19] | 钟辉智, 蔡君伟. 夏热冬冷地区净零能耗示范建筑能耗及碳排放分析[J]. 制冷与空调(四川), 2022, 36(2): 258-262. |
ZHONG Huizhi, CAI Junwei. Analysis on energy consumption and carbon emission of net zero energy consumption demonstration buildings in hot summer and cold winter areas[J]. Refrigeration & Air Conditioning, 2022, 36(2): 258-262. | |
[20] | ALI K A, AHMAD M I, YUSUP Y. Issues, impacts, and mitigations of carbon dioxide emissions in the building sector[J]. Sustainability, 2020, 12(18): 7427. |
[21] | 汪文楠. 绿色建筑工程造价管理的影响因素及解决方法[J]. 智能城市应用, 2024(2): 67-69. |
WANG Wennan. The influencing factors and solutions of cost management in green building projects[J]. Smart City Application, 2024(2): 67-69. | |
[22] | 王宜卿, 成建宏, 陈焕新, 等. 用于居民建筑的多联机系统能效标准分区可行性探讨[J]. 制冷技术, 2023, 43(3): 43-50. |
WANG Yiqing, CHENG Jianhong, CHEN Huanxin, et al. Discussion on feasibility of energy efficiency standard of variable refrigerant flow system for residential buildings[J]. Chinese Journal of Refrigeration Technology, 2023, 43(3): 43-50. | |
[23] | 刘勇. 暖通节能设计与暖通工程造价成本控制[J]. 工程技术创新与发展, 2023, 1(3): 105-107. |
LIU Yong. HVAC energy-saving design and HVAC engineering cost control[J]. Engineering Technology Innovation and Development, 2023, 1(3): 105-107. | |
[24] | 冯国会, 崔航, 常莎莎, 等. 近零能耗建筑碳排放及影响因素分析[J]. 气候变化研究进展, 2022, 18(2): 205-214. |
FENG Guohui, CUI Hang, CHANG Shasha, et al. Analysis of carbon emissions and influencing factors of near-zero energy buildings[J]. Climate Change Research, 2022, 18(2): 205-214. | |
[25] | FIDAN A A. Determination of optimum building envelope parameters of a room concerning window-to-wall ratio, orientation, insulation thickness and window type[J]. Buildings, 2022, 12(3): 383. |
[26] | MEHRDAD R, HABTAMU B M, NATASA N. Achieving zero-energy building performance with thermal and visual comfort enhancement through optimization of fenestration, envelope, shading device, and energy supply system[J]. Sustainable Energy Technologies and Assessments, 2021, 44: 101020. |
[27] | 狄育慧, 高亚茹, 蒋婧. 基于Airpak的某建筑工地活动板房室内热环境数值模拟[J]. 西安工程大学学报, 2023, 37(2): 40-46. |
DI Yuhui, GAO Yaru, JIANG Jing. Numerical simulation of indoor thermal environment of prefab house on a construction site based on Airpak[J]. Journal of Xi'an Polytechnic University, 2023, 37(2): 40-46. | |
[28] | 刘若辰, 李建霞, 刘静, 等. 动态多目标优化研究综述[J]. 计算机学报, 2020, 43(7): 1246-1278. |
LIU Ruochen, LI Jianxia, LIU Jing, et al. A survey on dynamic multi-objective optimization[J]. Chinese Journal of Computers, 2020, 43(7): 1246-1278. | |
[29] | 周少航. 近零能耗建筑碳排放及影响因素分析[J]. 城市建筑与发展, 2023, 4(5): 101-104. |
ZHOU Shaohang. Analysis of carbon emissions and influencing factors of near-zero energy buildings[J]. Urban architecture and development, 2023, 4(5): 101-104. | |
[30] | 闻莉. 基于技术进步的建筑业碳排放回弹效应测度[J]. 运筹与模糊学, 2023, 13(5):4298-4306. |
WEN Li. Measurement of the rebound effect of carbon emissions in the construction industry based on technological progress[J]. Operations Research and Fuzziness, 2023, 13(5):4298-4306. | |
[31] | 纪士斌. 建筑材料[M]. 4版. 北京: 清华大学出版社, 2004. |
[32] | 潘英. 能源战略下的能源电力发展方向和碳排放问题[J]. 南方能源建设, 2019, 6(3): 32-39. |
PAN Ying. Energy power development direction and low carbon emission under energy strategy[J]. Southern Energy Construction, 2019, 6(3): 32-39. | |
[33] | 张涛, 姜裕华, 黄有亮, 等. 建筑中常用的能源与材料的碳排放因子[J]. 中国建设信息, 2010(23): 58-59. |
ZHANG Tao, JIANG Yuhua, HUANG Youliang, et al. Carbon emission factors of energy and materials commonly used in buildings[J]. Information of China Construction, 2010(23): 58-59. | |
[34] | 中华人民共和国住房和城乡建设部. 建筑碳排放计算标准: GB/T 51366—2019[S]. 北京: 中国建筑工业出版社. |
[35] | 冯国会, 陈菲, 常莎莎. 近零能耗建筑围护结构多目标优化研究[J]. 沈阳建筑大学学报(自然科学版), 2023, 39(4): 699-706. |
FENG Guohui, CHEN Fei, CHANG Shasha. Multi-objective optimization of envelope structure for near zero energy building[J]. Journal of Shenyang Jianzhu University (Natural Science), 2023, 39(4): 699-706. | |
[36] | 罗中凯, 张立波. 学习路径规划方法[J]. 中国科学院大 学学报, 2024, 41(1): 11-27. |
LUO Zhongkai, ZHANG Libo. Learning path planning methods[J]. Journal of University of Chinese Academy of Sciences, 2024, 41(1): 11-27. | |
[37] | 谢冰川, 张岳, 徐振耀, 等. 基于代理模型的电机多学科优化关键技术综述[J]. 电工技术学报, 2022, 37(20): 5117-5143. |
XIE Bingchuan, ZHANG Yue, XU Zhenyao, et al. Review on multidisciplinary optimization key technology of electrical machine based on surrogate models[J]. Transactions of China Electrotechnical Society, 2022, 37(20): 5117-5143. | |
[38] |
包晓安, 曹云棣, 张娜, 等. 基于格分布方差的多目标云工作流调度算法[J]. 电信科学, 2019, 35(2): 1-13.
doi: 10.11959/j.issn.1000-0801.2019035 |
BAO Xiao'an, CAO Yundi, ZHANG Na, et al. Multi-objective cloud workflow scheduling algorithm based on grid variance[J]. Telecommunications Science, 2019, 35(2): 1-13.
doi: 10.11959/j.issn.1000-0801.2019035 |
[1] | 樊颜搏, 熊亚选, 李想, 田曦, 杨洋. 基于遗传算法的建筑用能多目标优化应用进展[J]. 综合智慧能源, 2024, 46(9): 69-85. |
[2] | 李菲菲, 徐绘薇, 崔金栋. 基于STIRPAT模型的吉林省石化行业碳排放影响因素研究[J]. 综合智慧能源, 2024, 46(8): 12-19. |
[3] | 李菲菲, 王舒泓, 崔金栋. 全生命周期视角下汽车产业碳排放影响因素的研究——以吉林省为例[J]. 综合智慧能源, 2024, 46(8): 20-27. |
[4] | 李云, 周世杰, 胡哲千, 梁均原, 肖雷鸣. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4): 1-9. |
[5] | 陈勇, 肖雷鸣, 王井南, 吴健. 基于场景扩充的低碳综合能源系统高可靠性容量规划方法[J]. 综合智慧能源, 2024, 46(4): 24-33. |
[6] | 汤梓涵, 王帅杰, 鞠振河, 雷志奇. 光伏/光热耦合空气源热泵系统性能优化[J]. 综合智慧能源, 2024, 46(4): 34-41. |
[7] | 孙健, 张云帆, 蔡潇龙, 刘鼎群. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19. |
[8] | 魏夕凯, 谭效时, 林明, 程俊杰, 向可祺, 丁书欣. 2005—2035年全国电网碳排放因子的计算与预测[J]. 综合智慧能源, 2024, 46(3): 72-78. |
[9] | 陆文甜. 基于增量交换的主动配电网分布式多目标最优潮流[J]. 综合智慧能源, 2024, 46(2): 43-48. |
[10] | 白章, 郝文杰, 李琦, 郝洪亮, 温彩凤, 郭苏, 黄贤坤. 基于全生命周期评价的风光制氢综合系统容量配置优化研究[J]. 综合智慧能源, 2024, 46(10): 1-11. |
[11] | 吴琪, 赵宣茗, 张佳诚, 裘智峰, 王雅琳. 考虑电-碳价格耦合的低碳需求响应研究[J]. 综合智慧能源, 2024, 46(10): 56-66. |
[12] | 张力, 金立, 任炬光, 刘小兵. 计及气象因素与分时电价影响的综合能源系统负荷调控策略研究[J]. 综合智慧能源, 2024, 46(1): 18-27. |
[13] | 谭九鼎, 李帅兵, 李明澈, 马喜平, 康永强, 董海鹰. 计及不确定性的分布式微网参与电网优化调度方法综述[J]. 综合智慧能源, 2024, 46(1): 38-48. |
[14] | 方刚, 王静, 张波波, 王俊哲. 基于Pareto解集的工业园区微网优化配置研究[J]. 综合智慧能源, 2024, 46(1): 49-55. |
[15] | 闫丽梅, 胡汶硕. 基于复功率分布矩阵的电力系统碳流追踪方法[J]. 综合智慧能源, 2023, 45(8): 1-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||