综合智慧能源 ›› 2025, Vol. 47 ›› Issue (10): 60-68.doi: 10.3969/j.issn.2097-0706.2025.10.007

• 新能源与储能系统优化 • 上一篇    下一篇

基于甲醇合成与燃气轮机联合循环的联产系统优化分析

黄梓琪(), 吴志聪(), 徐钢*(), 葛士宇(), 陈衡()   

  1. 华北电力大学 热电生产过程污染物监测与控制北京市重点实验室北京 102206
  • 收稿日期:2024-10-23 修回日期:2024-12-16 出版日期:2025-05-28
  • 通讯作者: *徐钢(1978),男,教授,博士,从事热力学、火力发电节能理论与技术、多能互补系统集成等方面的研究,xgncepu@163.com
  • 作者简介:黄梓琪(2000),女,硕士生,从事氢醇高效转化及化工动力集成方面的研究,19030821131@163.com
    吴志聪(1997),男,博士生,从事氢醇高效转化及化工动力集成、复杂能源系统集成、发电节能理论与技术等方面的研究,wuzc_ncepu@163.com
    葛士宇(2001),男,硕士生,从事光热电站、氢醇转化、压缩空气储能、卡诺电池、热力系统集成等方面的研究,GSY_Ncepu@163.com
    陈衡(1989),男,教授,博士,从事电力系统集成、优化及评价、“双碳”技术路线、多类型源储协同、电网提质增效等方面的研究,heng@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51821004)

Optimization analysis of a cogeneration system based on methanol synthesis and gas turbine combined cycle

HUANG Ziqi(), WU Zhicong(), XU Gang*(), GE Shiyu(), CHEN Heng()   

  1. Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power GenerationNorth China Electric Power UniversityBeijing 102206, China
  • Received:2024-10-23 Revised:2024-12-16 Published:2025-05-28
  • Supported by:
    National Natural Scientific Foundation of China(51821004)

摘要:

提出一种新型系统,对甲醇合成系统进行全流程优化。该系统将甲醇合成系统的驰放气用作燃气轮机联合循环(GTCC)的原料气体,且GTCC能够有效利用甲醇合成塔所产生的热量,从而提升整个系统能量的利用效率及发电能力。采用Aspen Plus软件构建新系统模型,与甲醇合成系统进行对比,并对两个系统进行热力学及敏感性分析。热力学分析表明:甲醇合成集成GTCC优化系统与传统系统相比能效提升3.53%,㶲效率提升3.66%。敏感性分析结果显示:操作条件设定压力为3~8 MPa、合成温度为200~300 ℃、分流比为0.95~ 0.99,H2/CO2摩尔比为2.5~3.5时,将合成温度设定为250 ℃,H2/CO2摩尔比设定为3,提高压力、增大分流比均对甲醇产量的提升有积极作用。

关键词: 绿氢制甲醇, 驰放气优化, 能量分析, 㶲分析, 敏感性分析

Abstract:

A new system was proposed to achieve comprehensive optimization of the traditional methanol synthesis system. In this system, the purge gas from methanol synthesis system served as the feed gas for the Gas Turbine Combined Cycle (GTCC). Additionally, GTCC effectively recovered the heat generated by the methanol synthesis tower, improving overall energy efficiency and power generation capacity. A model of the new system was developed using Aspen Plus software, and its performance was compared with that of the traditional synthesis system. Thermodynamic and sensitivity analyses were conducted for both systems. Thermodynamic analysis results revealed that, compared to the conventional system, the GTCC-integrated methanol synthesis system achieved a 3.53% enhancement in energy efficiency and a 3.66% improvement in exergy efficiency. Sensitivity analysis indicated that under operating conditions with pressures ranging from 3 to 8 MPa, synthesis temperatures between 200 and 300 ℃, split ratio from 0.95 to 0.99, and an H2/CO2 molar ratio between 2.5 to 3.5, increasing pressure, adopting a higher split ratio, setting the synthesis temperature at 250 ℃, and maintaining an H2/CO2 molar ratio of 3 contributed positively to methanol production.

Key words: green hydrogen-based methanol production, purge gas optimization, energy analysis, exergy analysis, sensitivity analysis

中图分类号: