[1] |
王永真, 张靖, 潘崇超, 等. 综合智慧能源多维绩效评价指标研究综述[J]. 全球能源互联网, 2021, 4(3):207-225.
|
|
WANG Yongzhen, ZHANG Jing, PAN Chongchao, et al. Multi-dimensional performance evaluation index review of integrated and intelligent energy[J]. Journal of Global Energy Interconnection, 2021, 4(3):207-225.
|
[2] |
甘中学, 郑超越, 许裕栗, 等. 三联供能源系统优化建模与调度方法[J]. 控制工程, 2020, 27(6):1103-1112.
|
|
GAN Zhongxue, ZHENG Chaoyue, XU Yuli, et al. Energy optimization modeling and scheduling method for CCHP system[J]. Control Engineering of China, 2020, 27(6):1103-1112.
|
[3] |
李浩, 钟声远, 王永真, 等. 基于能量与信息耦合的分布式能源系统配置优化方法[J]. 中国电机工程学报, 2020, 40(17):5467-5476.
|
|
LI Hao, ZHONG Shengyuan, WANG Yongzhen, et al. Optimization method on the distributed energy system based on energy and information coupled[J]. Proceedings of the CSEE, 2020, 40(17):5467-5476.
|
[4] |
马丽梅, 史丹, 裴庆冰. 中国能源低碳转型(2015—2050):可再生能源发展与可行路径[J]. 中国人口·资源与环境, 2018, 28(2):8-18.
|
|
MA Limei, SHI Dan, PEI Qingbing. Low-carbon transformation of China's energy in 2015—2050:Renewable energy development and feasible path[J]. China Population, Resources and Environment, 2018, 28(2):8-18.
|
[5] |
何建坤. 中国能源革命与低碳发展的战略选择[J]. 武汉大学学报(哲学社会科学版), 2015, 68(1):5-12.
|
|
HE Jiankun. The strategic choice of Chinese energy revolution and low carbon development[J]. Wuhan University Journal (Philosophy & Social Sciences), 2015, 68(1):5-12.
|
[6] |
HUANG A Q, CROW M L, HEYDT G T, et al. The future renewable electric energy delivery and management (FREEDM) system: The Energy Internet[J]. Proceedings of the IEEE, 2011, 99(1):133-148.
doi: 10.1109/JPROC.2010.2081330
|
[7] |
王永真, 张宁, 关永刚, 等. 当前能源互联网与智能电网研究选题的继承与拓展[J]. 电力系统自动化, 2020, 44(4):1-7.
|
|
WANG Yongzhen, ZHANG Ning, GUAN Yonggang, et al. Inheritance and expansion analysis of research topics between Energy Internet and smart grid[J]. Automation of Electric Power Systems, 2020, 44(4):1-7.
|
[8] |
徐潇源, 王晗, 严正, 等. 能源转型背景下电力系统不确定性及应对方法综述[J]. 电力系统自动化, 2021, 45(16):1-13.
|
|
XU Xiaoyuan, WANG Han, YAN Zheng, et al. Overview of power system uncertainty and its solutions under energy transition[J]. Automation of Electric Power Systems, 2021, 45(16):1-13.
|
[9] |
卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9):171-191.
|
|
ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9):171-191.
|
[10] |
肖晋宇, 侯金鸣, 杜尔顺, 等. 支撑电力系统清洁转型的储能需求量化分析模型与案例分析[J/OL]. 电力系统自动化, 2020:1-11[2021-07-28]. https://kns.cnki.net/kcms/detail/32.1180.TP.20200720.1309.002.html.
|
|
XIAO Jinyu, HOU Jinming, DU Ershun, et al. Quantitative analysis model and case study of energy storage demand supporting clean transformation of electric power system[J/OL]. Automation of Electric Power Systems, 2020:1-11[2021-07-28]. https://kns.cnki.net/kcms/detail/32.1180.TP.20200720.1309.002.html.
|
[11] |
张文华, 闫庆友, 何钢, 等. 气候变化约束下中国电力系统低碳转型路径及策略[J]. 气候变化研究进展, 2021, 17(1):18-26.
|
|
ZHANG Wenhua, YAN Qingyou, HE Gang, et al. The pathway and strategy of China's power system low-carbon transition under the constraints of climate change[J]. Climate Change Research, 2021, 17(1):18-26.
|
[12] |
朱炫灿, 葛天舒, 吴俊晔, 等. 吸附法碳捕集技术的规模化应用和挑战[J]. 科学通报, 2021(22):2861-2877.
|
|
ZHU Xuancan, GE Tianshu, WU Junye, et al. Large-scale applications and challenges of adsorption-based carbon capture technologies[J]. Chinese Science Bulletin, 2021(22):2861-2877.
|
[13] |
WANG Yongzhen, LI Chengjun, ZHAO Jun, et al. The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches[J]. Renewable and Sustainable Energy Reviews, 2021, 138:110557.
doi: 10.1016/j.rser.2020.110557
|
[14] |
郑克棪, 郑帆. 中国地热发电产业前景探讨[J]. 中外能源, 2020, 25(11):17-23.
|
|
ZHENG Keyan, ZHENG Fan. Discussion on prospects of geothermal power generation industry in China[J]. Sino-Global Energy, 2020, 25(11):17-23.
|
[15] |
王深, 吕连宏, 张保留, 等. 基于多目标模型的中国低成本碳达峰碳中和路径研究[J/OL]. 环境科学研究, 2021:1-15[2021-07-28]. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=202103190000004.
|
|
WANG Shen, LYU Lianhong, ZHANG Baoliu, et al. Multi objective programming model of low-cost path for China's peaking carbon dioxide emissions and carbon neutrality[J/OL]. Research of Environmental Sciences,2021:1-15 [2021-07-28]. http://www.hjkxyj.org.cn/hjkxyj/ch/reader/view_abstract.aspx?file_no=202103190000004.
|
[16] |
江亿, 胡姗. 中国建筑部门实现碳中和的路径[J]. 暖通空调, 2021, 51(5):1-13.
|
|
JIANG Yi, HU Shan. Paths to carbon neutrality in China's building sector[J]. Heating Ventilating & Air Conditioning, 2021, 51(5):1-13.
|
[17] |
IRENA. Renewable energy statistics 2020[EB/OL].(2020-07-01)[2021-07-28]. https://www.irena.org/publications/2020/Jul/Renewable-energy-statistics-2020.
|
[18] |
王永真, 杨柳, 张超, 等. 中国地热发电发展现状与面临的挑战[J]. 国际石油经济, 2019, 27(1):95-100.
|
|
WANG Yongzhen, YANG Liu, ZHANG Chao, et al. Status quo and challenges of geothermal power generation in China[J]. International Petroleum Economics, 2019, 27(1):95-100.
|
[19] |
王青宽. 风光储微电网配置和运行优化研究[D]. 北京:华北电力大学, 2019.
|
[20] |
汪昌霜. 大规模新能源发电并网容量效益及消纳能力评估方法研究[D]. 武汉:华中科技大学, 2018.
|
[21] |
陈典, 钟海旺, 夏清. 基于全成本电价的安全约束经济调度[J]. 中国电机工程学报, 2016, 36(5):1190-1199.
|
|
CHEN Dian, ZHONG Haiwang, XIA Qing. Security constrained economic dispatch based on total cost price[J]. Proceedings of the CSEE, 2016, 36(5):1190-1199.
|
[22] |
BEARDSMORE G, DAVIDSON C, PAYNE D, et al. Australia country update [C]// Proceedings World Geothermal Congress 2020. Reykjavik, 2020.
|
[23] |
马冰, 贾凌霄, 于洋, 等. 世界地热能开发利用现状与展望[J/OL]. 中国地质, 2021:1-22 [2021-07-28]. http://kns.cnki.net/kcms/detail/11.1167.P.20210528.1040.004.html.
|
|
MA Bing, JIA Lingxiao, YU Yang, et al. The development and utilization of geothermal energy in the world[J/OL]. Geology in China, 2021:1-22 [2021-07-28]. http://kns.cnki.net/kcms/detail/11.1167.P.20210528.1040.004.html.
|
[24] |
罗佐县, 刘芮, 宫昊, 等. 中国地热产业发展空间分析[J]. 国际石油经济, 2021, 29(4):40-47.
|
|
LUO Zuoxian, LIU Rui, GONG Hao, et al. The development space of geothermal industry in China[J]. International Petroleum Economics, 2021, 29(4):40-47.
|
[25] |
何治亮, 李双建, 刘全有, 等. 盆地深部地质作用与深层资源——科学问题与攻关方向[J]. 石油实验地质, 2020, 42(5):767-779.
|
|
HE Zhiliang, LI Shuangjian, LIU Quanyou, et al. Deep geological processes and deep resources in basins:Scientific issues and research directions[J]. Petroleum Geology & Experiment, 2020, 42(5):767-779.
|
[26] |
许天福, 汪禹, 封官宏. 深部超临界地热资源研究进展及开发前景展望[J]. 天然气工业, 2021, 41(3):155-167.
|
|
XU Tianfu, WANG Yu, FENG Guanhong. Research progress and development prospect of deep supercritical geothermal resources[J]. Natural Gas Industry, 2021, 41(3):155-167.
|
[27] |
王永真, 朱轶林, 潘利生, 等. 基于知识图谱的有机朗肯循环研究概览[J]. 太阳能, 2020(2):18-32.
|
|
WANG Yongzhen, ZHU Yilin, PAN Lisheng, et al. Overview of research on organic Rankine cycle based on knowledge graph domain[J]. Solar Energy, 2020(2):18-32.
|
[28] |
ZHAO Jun, HU Likai, WANG Yongzhen, et al. How to rapidly predict the performance of ORC: Optimal empirical correlation based on cycle separation[J]. Energy Conversion and Management, 2019, 188:86-93.
doi: 10.1016/j.enconman.2019.02.095
|
[29] |
张亮, 裴晶晶, 任韶然. 超临界CO2在干热岩中的采热能力及系统能量利用效率的研究[J]. 可再生能源, 2014, 32(1):114-119.
|
|
ZHANG Liang, PEI Jingjing, REN Shaoran. Heat mining capacity and energy utilization efficiency of SCCO2-HDR geothermal system[J]. Renewable Energy Resources, 2014, 32(1):114-119.
|
[30] |
汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32):25-31.
|
[31] |
任福康, 陈宜, 王江江. 耦合太阳能和地热能的冷热电联供系统优化[J]. 工程热物理学报, 2021, 42(1):16-24.
|
|
REN Fukang, CHEN Yi, WANG Jiangjiang . Optimization of combined cooling, heating, and power system coupled with solar and geothermal energies[J]. Journal of Engineering Thermophysics, 2021, 42(1):16-24.
|
[32] |
董师彤. 基于地热的新型冷热电三联供系统的研究[D]. 抚顺:辽宁石油化工大学, 2020.
|
[33] |
安磊, 王绵斌, 齐霞, 等. “风、光、火、蓄、储”多能源互补优化调度方法研究[J]. 可再生能源, 2018, 36(10):1492-1498.
|
|
AN Lei, WANG Mianbin, QI Xia, et al. Optimal dispatching of multi-power sources containing wind/photovoltaic/thermal/hydro-pumped and battery storage[J]. Renewable Energy Resources, 2018, 36(10):1492-1498.
|