综合智慧能源 ›› 2022, Vol. 44 ›› Issue (10): 33-41.doi: 10.3969/j.issn.2097-0706.2022.10.005
收稿日期:
2022-06-02
修回日期:
2022-08-30
出版日期:
2022-10-25
通讯作者:
*吴振龙(1992),男,副教授,博士,从事自抗扰控制及其工程应用等方面的研究,wuzhenlong2020@zzu.edu.cn。作者简介:
李朋真(1997),男,在读硕士研究生,从事自抗扰控制等方面的研究,lipengzhen24@163.com基金资助:
LI Pengzhen, LIU Yanhong, WU Zhenlong()
Received:
2022-06-02
Revised:
2022-08-30
Published:
2022-10-25
摘要:
由于可再生能源的波动性和随机性,多区域可再生能源电力系统的负荷频率变化复杂且难以控制。为了改善电力系统的稳定性,针对多区域可再生能源电力系统的负荷频率控制问题提出了一种基于多目标遗传算法的串级自抗扰控制方法。该方法通过设计线性自抗扰控制并引入其串级结构来提高系统的抗干扰能力,借助多目标遗传算法对设计的控制器参数进行优化以减小频率和联络线功率偏差,达到更好的控制效果。此外,进行不同控制策略下电力系统的仿真和对比,结果表明所设计的控制系统具有很好的动态性能,加入负荷扰动后能够快速消除干扰并维持系统稳定。仿真结果验证了所设计控制器的有效性。
中图分类号:
李朋真, 刘艳红, 吴振龙. 高比例可再生能源的多区域电力系统负荷频率自抗扰控制[J]. 综合智慧能源, 2022, 44(10): 33-41.
LI Pengzhen, LIU Yanhong, WU Zhenlong. Active disturbance rejection control on load frequency of multi-area power systems with high-proportion renewable energy[J]. Integrated Intelligent Energy, 2022, 44(10): 33-41.
[1] | 中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见[EB/OL].(2021-09-22)[2022-06-01]. . |
[2] | 张勋奎. 以新能源为主体的新型电力系统发展路线图[J]. 分布式能源, 2021, 6(6):1-8. |
ZHANG Xunkui. A roadmap for developing a new power system with new energy as the main body[J]. Distributed Energy, 2021, 6(6): 1-8. | |
[3] |
SHARMA J, HOTE Y, PRASAD R. PID controller design for interval load frequency control system with communication time delay[J]. Control Engineering Practice, 2019, 89: 154-168.
doi: 10.1016/j.conengprac.2019.05.016 |
[4] |
XIAHOU K S, LIU Y, WU Q H. Robust load frequency control of power systems against random time-delay attacks[J]. IEEE Transactions on Smart Grid, 2021, 12(1):909-911.
doi: 10.1109/TSG.2020.3018635 |
[5] |
MANI P, YOUNG H. Fuzzy logic-based integral sliding mode control of multi-area power systems integrated with wind farms[J]. Information Sciences, 2021, 545:153-169.
doi: 10.1016/j.ins.2020.07.076 |
[6] | RAJASI M, KALYAN C, BHAVESH K. Load frequency control of a single area hybrid power system by using integral and LQR based integral controllers[C]// 2018 20th National Power Systems Conference(NPSC), 2018:1-6. |
[7] | JIA Y B, MENG K, WU K, et al. Optimal load frequency control for networked power systems based on distributed economic MPC[J]. IEEE Transactions on Systems,Man,and Cybernetics:Systems, 2021, 51(4):2123-2133. |
[8] |
PRASAD S, ANSARI R. Frequency regulation using neural network observer based controller in power system[J]. Control Engineering Practice, 2020, 102:104571.
doi: 10.1016/j.conengprac.2020.104571 |
[9] | 李杰, 齐晓慧, 万慧, 等. 自抗扰控制:研究成果总结与展望[J]. 控制理论与应用, 2017, 34(3): 281-295. |
LI Jie, QI Xiaohui, WAN Hui, et al. Active disturbance rejection control:Theoretical results summary and future researches[J]. Control Theory & Applications, 2017, 34(3):281-295. | |
[10] | GAO Z Q. Scaling and bandwidth-parameterization based controller tuning[C]// Proceedings of the 2003 American Control Conference, 2003:4989-4996. |
[11] | GAO Z Q. Active disturbance rejection control:A paradigm shift in feedback control system design[C]// Proceedings of the 2006 American Control Conference, 2006:2399-2405. |
[12] |
SUN H, SUN Q L, WU W N, et al. Altitude control for flexible wing unmanned aerial vehicle based on active disturbance rejection control and feedforward compensation[J]. International Journal of Robust and Nonlinear Control, 2020, 30(1):222-245.
doi: 10.1002/rnc.4758 |
[13] |
WEI X J, YOU L H, ZHANG H F, et al. Disturbance observer based control for dynamically positioned ships with ocean environmental disturbances and actuator saturation[J]. International Journal of Robust and Nonlinear Control, 2022, 32(7):4113-4128.
doi: 10.1002/rnc.6023 |
[14] |
ZHAO K, ZHANG J H, MA D L, et al. Composite disturbance rejection attitude control for quadrotor with unknown disturbance[J]. IEEE Transactions on Industrial Electronics, 2020, 67(8):6894-6903.
doi: 10.1109/TIE.2019.2937065 |
[15] |
WANG Z J, ZHAO T. Adaptive-based linear active disturbance rejection attitude control for quadrotor with external disturbances[J]. Transactions of the Institute of Measurement and Control, 2022, 44(2):286-298.
doi: 10.1177/01423312211031781 |
[16] | WANG S, CHEN J, HE X. An adaptive composite disturbance rejection for attitude control of the agricultural quadrotor UAV[J]. ISA Transactions, 2022. |
[17] | CHANG S P, WANG Y J, ZUO Z Q. Fixed-time active disturbance rejection control and its application to wheeled mobile robots[J]. IEEE Transactions on Systems,Man,and Cybernetics: Systems, 2021, 51(11): 7120-7130. |
[18] |
LI X A, SUN K, GUO C, et al. Hybrid adaptive disturbance rejection control for inflatable robotic arms[J]. ISA Transactions, 2022, 126: 617-628.
doi: 10.1016/j.isatra.2021.08.016 |
[19] |
TAN W, HAO Y C, LI D H. Load frequency control in deregulated environments via active disturbance rejection[J]. International Journal of Electrical Power and Energy Systems, 2015, 66: 166-177.
doi: 10.1016/j.ijepes.2014.10.036 |
[20] |
ZHENG Y M, TAO J, SUN H, et al. Load frequency active disturbance rejection control for multi-source power system based on soft actor-critic[J]. Energies, 2021, 14:4804.
doi: 10.3390/en14164804 |
[21] |
ADEL A, RAGAB A, ABDULLAH M, et al. Design of cascaded controller based on coyote optimizer for load frequency control in multi-area power systems with renewable sources[J]. Control Engineering Practice, 2022, 121:105058.
doi: 10.1016/j.conengprac.2021.105058 |
[22] |
ABD-ELAZIM S M, ALI E S. Load frequency controller design of a two-area system composing of PV grid and thermal generator via firefly algorithm[J]. Neural Computing and Applications, 2018, 30(2): 607-616.
doi: 10.1007/s00521-016-2668-y |
[23] | 张孝顺, 谭恬, 蒙蝶, 等. 基于光伏系统的动态代理模型最大功率点跟踪算法研究[J]. 华电技术, 2021, 43(8): 1-10. |
ZHANG Xiaoshun, TAN Tian, MENG Die, et al. Study on dynamic surrogate model for MPPT of PV systems[J]. Huadian Technology, 2021, 43(8): 1-10. | |
[24] | 荆立坤, 唐宜强, 潘凤萍, 等. 基于鲁棒约束的PI控制器参数多目标优化及应用[J]. 华电技术, 2021, 43(5): 1-8. |
JING Likun, TANG Yiqiang, PAN Fengping, et al. Multi-objective optimization of PI controller parameters under robustness constraint and its application[J]. Huadian Technology, 2021, 43(5): 1-8. | |
[25] |
李旭炯, 孙林花, 杨郭明. 基于改进粒子群算法的光伏系统附加向心属性最大功率跟踪研究[J]. 综合智慧能源, 2022, 44(3): 70-76.
doi: 10.3969/j.issn.2097-0706.2022.03.011 |
LI Xujiong, SUN Linhua, YANG Guoming. MPPT for PV systems appended with centripetal attribute based on improved PSO algorithm[J]. Integrated Intelligent Energy, 2022, 44(3): 70-76.
doi: 10.3969/j.issn.2097-0706.2022.03.011 |
|
[26] | SANTY T, NATESAN R. Load frequency control of a two area system consisting of a grid connected PV system and diesel generator[J]. International Journal of Emerging Technology in Computer Science & Electronics, 2015, 13(1): 456-461. |
[27] | TOMY F T, PRAKASH R. Load frequency control of a two area hybrid system consisting of a grid connected PV system and thermal generator[J]. International Journal of Research in Engineering and Technology, 2014, 3(7): 573-580. |
[28] |
MAHTO T, MUKHERJEE V. Fractional order fuzzy PID controller for wind energy‐based hybrid power system using quasi‐oppositional harmony search algorithm[J]. IET Generation, Transmission & Distribution, 2017, 11(13): 3299-3309.
doi: 10.1049/iet-gtd.2016.1975 |
[29] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
doi: 10.1109/4235.996017 |
[30] |
吴振龙, 何婷, 王灵梅, 等. 基于多目标遗传算法的过热汽温建模与仿真[J]. 系统仿真学报, 2017, 29(9): 2081-2086.
doi: 10.16182/j.issn1004731x.joss.201709027 |
WU Zhenlong, HE Ting, WANG Lingmei, et al. Modeling and simulation of superheated steam temperature based on multi-objective genetic algorithm[J]. Journal of System Simulation, 2017, 29(9): 2081-2086.
doi: 10.16182/j.issn1004731x.joss.201709027 |
|
[31] |
李彩霞, 赵军, 李建伟, 等. 基于数据驱动的CFB机组变负荷工况SO2质量浓度建模[J]. 综合智慧能源, 2022, 44(3): 63-69.
doi: 10.3969/j.issn.2097-0706.2022.03.010 |
LI Caixia, ZHAO Jun, LI Jianwei, et al. Data-driven modeling for SO2 mass concentration of CFB units under variable load conditions[J]. Integrated Intelligent Energy, 2022, 44(3): 63-69.
doi: 10.3969/j.issn.2097-0706.2022.03.010 |
|
[32] | 章文浦, 王强钢. 基于遗传算法的分布式多能互补能源系统优化配置[J]. 华电技术, 2021, 43(1): 52-58. |
ZHANG Wenpu, WANG Qianggang. Optimized allocation of multi-energy complementary distributed energy system based on genetic algorithm[J]. Huadian Technology, 2021, 43(1): 52-58. | |
[33] | WU Z L, LIU Y H, CHEN Y Q, et al. Load frequency regulation for multi-area power systems with renewable sources via active disturbance rejection control[J]. Energy Reports, 2022, 8(5): 401-409. |
[1] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[2] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[3] | 王泽宁, 李文中, 李东辉, 徐泰山, 俞俊. 基于软件定义的新型电力系统分层自治电力平衡模式研究[J]. 综合智慧能源, 2024, 46(7): 1-11. |
[4] | 殷林飞, 蒙雨洁. 基于DenseNet卷积神经网络的短期风电预测方法[J]. 综合智慧能源, 2024, 46(7): 12-20. |
[5] | 何方波, 裴力耕, 郑睿, 范康健, 张晓曼, 李更丰. “源网荷储”协同助力陕西省新型电力系统建设[J]. 综合智慧能源, 2024, 46(7): 40-46. |
[6] | 郑庆明, 井延伟, 梁涛, 柴露露, 吕梁年. 基于DDPG算法的离网型可再生能源大规模制氢系统优化调度[J]. 综合智慧能源, 2024, 46(6): 35-43. |
[7] | 郁海彬, 卢闻州, 唐亮, 张煜晨, 邹翔宇, 姜玉靓, 刘嘉宝. 考虑风险偏好的多主体虚拟电厂经济调度与收益分配策略[J]. 综合智慧能源, 2024, 46(6): 66-77. |
[8] | 王亮, 邓松. 面向新型电力系统的异常数据检测方法[J]. 综合智慧能源, 2024, 46(5): 12-19. |
[9] | 董强, 徐君, 方东平, 方丽娟, 陈妍琼. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23. |
[10] | 缪月森, 夏红军, 黄宁洁, 李云, 周世杰. 基于Informer的负荷及光伏出力系数预测[J]. 综合智慧能源, 2024, 46(4): 60-67. |
[11] | 王永利, 王亚楠, 马子奔, 秦雨萌, 陈锡昌, 滕越. 面向区块链技术应用的能源交易系统效果评价[J]. 综合智慧能源, 2024, 46(4): 78-84. |
[12] | 丁乐言, 柯松, 杨军, 施兴烨. 基于自适应控制参数整定的虚拟同步发电机控制策略[J]. 综合智慧能源, 2024, 46(3): 35-44. |
[13] | 苑曙光, 张瑜婷, 王峰, 苑广震. 蒙西地区规模化储能商业运行模式及风险分析[J]. 综合智慧能源, 2024, 46(3): 63-71. |
[14] | 李成雲, 杨东升, 周博文, 杨波, 李广地. 基于数字孪生技术的新型电力系统数字化[J]. 综合智慧能源, 2024, 46(2): 1-11. |
[15] | 张心怡, 杨波. 考虑构网型和跟网型变流器的孤岛微电网小信号稳定性分析[J]. 综合智慧能源, 2024, 46(2): 12-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||