[1] |
李国庆, 刘先超, 辛业春, 等. 含高比例新能源的电力系统频率稳定研究综述[J]. 高电压技术, 2024, 50(3):1165-1181.
|
|
LI Guoqing, LIU Xianchao, XIN Yechun, et al. Research on frequency stability of power system with high penetration renewable energy: A review[J]. High Voltage Engineering, 2024, 50(3): 1165-1181.
|
[2] |
赵长伟, 王慧, 顾志成, 等. 分散式风储系统频率和电压调节能力评估关键技术[J]. 综合智慧能源, 2024, 46(6):78-87.
doi: 10.3969/j.issn.2097-0706.2024.06.009
|
|
ZHAO Changwei, WANG Hui, GU Zhicheng, et al. Key technologies of the evaluation on distributed wind-storage systems' frequency and voltage regulation capacities[J]. Integrated Intelligent Energy, 2024, 46(6): 78-87.
doi: 10.3969/j.issn.2097-0706.2024.06.009
|
[3] |
邹风华, 朱星阳, 殷俊平, 等. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40.
doi: 10.3969/j.issn.2097-0706.2024.08.005
|
|
ZOU Fenghua, ZHU Xingyang, YIN Junping, et al. Development trend analysis on building energy systems under "dual carbon" target[J]. Integrated Intelligent Energy, 2024, 46(8): 36-40.
doi: 10.3969/j.issn.2097-0706.2024.08.005
|
[4] |
衣立东, 蒙金有, 何川. 考虑系统一次频率响应特性的新型电力系统源网荷储协调鲁棒规划[J]. 电网技术, 2023, 47(9): 3659-3672.
|
|
YI Lidong, MENG Jinyou, HE Chuan. Source-grid-load-storage robust coordinated planning of new‑type power system considering primary frequency response characteristics[J]. Power System Technology, 2023, 47(9): 3659-3672.
|
[5] |
POURMOUSAVI S A, NEHRIR M H. Real‑time central demand response for primary frequency regulation in microgrids[J]. IEEE Transactions on Smart Grid, 2012, 3(4): 1988-1996.
|
[6] |
王路平, 李浩志, 谢小荣. 提高短期频率稳定性的紧急需求响应分散协调控制方法[J]. 中国电机工程学报, 2020, 40(11): 3462-3470.
|
|
WANG Luping, LI Haozhi, XIE Xiaorong. A decentralized and coordinated control of emergency demand response to improve short‑term frequency stability[J]. Proceedings of the CSEE, 2020, 40(11): 3462-3470.
|
[7] |
TIAN G Y, SUN Q Z. A stochastic controller for primary frequency regulation using ON/OFF demand side resources[J]. IEEE Transactions on Smart Grid, 2023, 14(5): 4141-4144.
|
[8] |
MU C X, LIU W Q, XU W, et al. Observer‑based load frequency control for island microgrid with photovoltaic power[J]. International Journal of Photoenergy, 2017, 2017: 2851436.
|
[9] |
米阳, 郝学智, 刘红业, 等. 基于滑模控制的含风储多域电力系统负荷频率控制[J]. 控制与决策, 2019, 34(2): 437-444.
|
|
MI Yang, HAO Xuezhi, LIU Hongye, et al. Multi‑area power system with wind power and energy storage system load frequency control based on sliding model control[J]. Control and Decision, 2019, 34(2): 437-444.
|
[10] |
米阳, 徐怡雯, 时帅, 等. 新型时滞可再生电力系统集成模型的滑模负荷频率控制设计[J]. 中国电机工程学报, 2022, 42(11):3953-3963.
|
|
MI Yang, XU Yiwen, SHI Shuai, et al. Sliding mode load frequency control design for the novel integrated model of time‑delay renewable power system[J]. Proceedings of the CSEE, 2022, 42(11):3953-3963.
|
[11] |
李朋真, 刘艳红, 吴振龙. 高比例可再生能源的多区域电力系统负荷频率自抗扰控制[J]. 综合智慧能源, 2022, 44(10): 33-41.
doi: 10.3969/j.issn.2097-0706.2022.10.005
|
|
LI Pengzhen, LIU Yanhong, WU Zhenlong, et al. Active disturbance rejection control on load frequency of multi‑area power systems with high‑proportion renewable energy[J]. Integrated Intelligent Energy, 2022, 44(10): 33-41.
doi: 10.3969/j.issn.2097-0706.2022.10.005
|
[12] |
方仍存, 桑子夏, 刘知行, 等. 基于改进协同量子粒子群算法的多微网负荷频率控制[J]. 电力建设, 2023, 44(7):87-97.
doi: 10.12204/j.issn.1000-7229.2023.07.010
|
|
FANG Rengcun, SANG Zixia, LIU Zhixing, et al. Load‑frequency control of multi‑microgrid systems based on improved cooperative quantum‑behaved particle swarm optimization[J]. Electric Power Construction, 2023, 44(7):87-97.
doi: 10.12204/j.issn.1000-7229.2023.07.010
|
[13] |
KUMAR A, ANWAR M N, KUMAR S. Sliding mode controller design for frequency regulation in an interconnected power system[J]. Protection and Control of Modern Power Systems, 2021, 6(1): 1-12.
|
[14] |
TRIP S, CUCUZZELLA M, DE PERSIS C, et al. Passivity‑based design of sliding modes for optimal load frequency control[J]. IEEE Transactions on Control Systems Technology, 2019, 27(5): 1893-1906.
|
[15] |
GUO J P. The load frequency control by adaptive high order sliding mode control strategy[J]. IEEE Access, 2022, 10: 25392-25399.
|
[16] |
LIAO K, XU Y. A robust load frequency control scheme for power systems based on second‑order sliding mode and extended disturbance observer[J]. IEEE Transactions on Industrial Informatics, 2018, 14(7): 3076-3086.
|
[17] |
YANG F, SHAO X Y, MUYEEN S M, et al. Disturbance observer based fractional‑order integral sliding mode frequency control strategy for interconnected power system[J]. IEEE Transactions on Power Systems, 2021, 36(6): 5922-5932.
|
[18] |
米阳, 潘达, 吴晓, 等. 基于等速趋近律的滑模负荷频率控制设计[J]. 控制工程, 2014, 21(3): 326-329.
|
|
MI Yang, PAN Da, WU Xiao, et al. The research of sliding mode load frequency control strategy based on constant reaching law[J]. Control Engineering of China, 2014, 21(3): 326-329.
|
[19] |
蔡旭, 李征. 风电机组与风电场的动态建模[M]. 北京: 科学出版社, 2016: 86-127.
|
[20] |
CHANG-CHIEN L R, AN L N, LIN T W, et al. Incorporating demand response with spinning reserve to realize an adaptive frequency restoration plan for system contingencies[J]. IEEE Transactions on Smart Grid, 2012, 3(3): 1145-1153.
|
[21] |
MI Y, FU Y, WANG C S, et al. Decentralized sliding mode load frequency control for multi‑area power systems[J]. IEEE Transactions on Power Systems, 2013, 28(4): 4301-4309.
|
[22] |
王智伟, 李鹏瀚, 刘鑫, 等. 基于分数阶滑模控制的双馈风电系统次同步振荡抑制方法[J]. 中国电机工程学报, 2023, 43(19): 7519-7530.
|
|
WANG Zhiwei, LI Penghan, LIU Xin, et al. Suppression method of subsynchronous oscillation in DFIG‑based wind power system based on fractional‑order sliding mode control[J]. Proceedings of the CSEE, 2023, 43(19):7519-7530.
|