[1] |
葛磊蛟, 崔庆雪, 李明玮, 等. 面向低碳经济运行的新型电力系统态势感知技术综述[J]. 综合智慧能源, 2023, 45(1): 1-13.
doi: 10.3969/j.issn.2097-0706.2023.01.001
|
|
GE Leijiao, CUI Qingxue, LI Mingwei, et al. Review on situational awareness technology in a low-carbon oriented new power system[J]. Integrated Intelligent Energy, 2023, 45(1): 1-13.
doi: 10.3969/j.issn.2097-0706.2023.01.001
|
[2] |
旦乙画, 张芮漩. 电力系统接地装置腐蚀特性及其诊断技术[J]. 重庆大学学报, 2023, 46(11): 26-41.
|
|
DAN Yihua, ZHANG Ruixuan. Corrosion characteristics and diagnosis technologies of grounding devices in power systems[J]. Journal of Chongqing University, 2023, 46(11): 26-41.
|
[3] |
严玉琼, 张苏, 梁志星, 等. 2016-2021年我国电力企业人身事故统计与规律分析[J]. 安全, 2023, 44(4):46-51.
|
|
YAN Yuqiong, ZHANG Su, LIANG Zhixing, et al. Statistics and analysis of electric power enterprises personal accidents in China during 2016-2021[J]. Safety & Security, 2023, 44(4): 46-51.
|
[4] |
李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41(18): 6245-6259.
|
|
LI Hui, LIU Dong,YAO Danyang. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41(18): 6245-6259.
|
[5] |
蔺家骏, 闫玮丹, 胡俊华, 等. 多模态知识图谱在电力运检中的应用与展望[J]. 综合智慧能源, 2024, 46(1): 65-74.
doi: 10.3969/j.issn.2097-0706.2024.01.008
|
|
LIN Jiajun, YAN Weidan, HU Junhua, et al. Application and prospect of multimodal knowledge graph in electric power operation inspection[J]. Integrated Intelligent Energy, 2024, 46(1): 65-74.
doi: 10.3969/j.issn.2097-0706.2024.01.008
|
[6] |
林穿, 徐启峰, 黄奕钒. 基于事理图谱的电力安全事故预控方法[J]. 中国安全生产科学技术, 2021, 17(10): 39-45.
|
|
LIN Chuan, XU Qifeng, HUANG Yifan. Pro-control method of power safety accidents based on event evolutionary graph[J]. Journal of Safety Science and Technology, 2021, 17(10): 39-45.
|
[7] |
何晓峰, 林子钊, 徐希, 等. 基于模糊化事故等级指标的调度风险评价方法[J]. 电力系统保护与控制, 2021, 49(5): 98-104.
|
|
HE Xiaofeng, LIN Zizhao, XU Xi, et al. A dispatch risk assessment method based on fuzzification accident rating index[J]. Power System Protection and Control, 2021, 49(5): 98-104.
|
[8] |
张苏, 刘晓露, 聂晓琴, 等. 电力人身伤亡事故致因网络的构建与分析[J]. 安全与环境学报, 2024, 24(6): 2305-2312.
|
|
ZHANG Su, LIU Xiaolu, NIE Xiaoqin, et al. Construction and analysis of the causal network of electric power personal injury and death accidents[J]. Journal of Safety and Environment, 2024, 24(6): 2305-2312.
|
[9] |
刘洋, 董久钰, 魏江. 数字创新管理:理论框架与未来研究[J]. 管理世界, 2020, 36(7): 198-217,219.
|
|
LIU Yang, DONG Jiuyu, WEI Jiang. Digital innovation management:Theoretical framework and future research[J]. Journal of Management World, 2020, 36(7):198-217,219.
|
[10] |
LIU B, ZHANG Z M. An Improved automatic extraction of Chinese mathematical terminology with iterated dilated residual gated convolutions[C]// Proceedings of 2021 Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS).IEEE, 2021: 178-181.
|
[11] |
李冬梅, 张扬, 李东远, 等. 实体关系抽取方法研究综述[J]. 计算机研究与发展, 2020, 57(7): 1424-1448.
|
|
LI Dongmei, ZHANG Yang, LI Dongyuan, et al. Review of entity relation extraction methods[J]. Journal of Computer Research and Development, 2020, 57(7): 1424-1448.
|
[12] |
CHEN X L, OUYANG C P, LIU Y B, et al. Improving the named entity recognition of Chinese electronic medical records by combining domain dictionary and rules[J]. International Journal of Environmental Research and Public Health, 2020, 17(8): 2687.
|
[13] |
张吉祥, 张祥森, 武长旭, 等. 知识图谱构建技术综述[J]. 计算机工程, 2022, 48(3): 23-37.
doi: 10.19678/j.issn.1000-3428.0061803
|
|
ZHANG Jixiang, ZHANG Xiangsen, WU Changxu, et al. Survey of knowledge graph construction techniques[J]. Computer Engineering, 2022, 48(3): 23-37.
doi: 10.19678/j.issn.1000-3428.0061803
|
[14] |
LIN J C W, SHAO Y N, DJENOURI Y, et al. ASRNN: A recurrent neural network with an attention model for sequence labeling[J]. Knowledge-Based Systems, 2021, 212: 106548.
|
[15] |
LI Y H, SONG L, ZHANG C. Sparse conditional hidden Markov model for weakly supervised named entity recognition[C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, 2022: 978-988.
|
[16] |
杨丽静, 唐俊, 沈伟富, 等. 基于命名实体识别的恶性肿瘤诊断文本信息提取研究[J]. 医院管理论坛, 2020, 37(8): 74-77.
|
|
YANG Lijing, TANG Jun, SHEN Weifu, et al. Research on text information extraction of malignant tumor diagnosis based on named entity recognition[J]. Hospital Management Forum, 2020, 37(8): 74-77.
|
[17] |
VAN HOUDT G, MOSQUERA C, NÁPOLES G. A review on the long short-term memory model[J]. Artificial Intelligence Review, 2020, 53(8): 5929-5955.
|
[18] |
POOSTCHI H, PICCARDI M. BiLSTM-SSVM: Training the BiLSTM with a structured hinge loss for named-entity recognition[J]. IEEE Transactions on Big Data, 2022, 8(1):203-212.
|
[19] |
何玉洁, 杜方, 史英杰, 等. 基于深度学习的命名实体识别研究综述[J]. 计算机工程与应用, 2021, 57(11): 21-36.
doi: 10.3778/j.issn.1002-8331.2012-0170
|
|
HE Yujie, DU Fang, SHI Yingjie, et al. Survey of named entity recognition based on deep learning[J]. Computer Engineering and Applications, 2021, 57(11): 21-36.
doi: 10.3778/j.issn.1002-8331.2012-0170
|
[20] |
WANG J N, XU W J, FU X Y, et al. ASTRAL:Adversarial trained LSTM-CNN for named entity recognition[J]. Knowledge-Based Systems, 2020, 197: 105842.
|
[21] |
HU Y J, MAI G C, CUNDY C, et al. Geo-knowledge-guided GPT models improve the extraction of location descriptions from disaster-related social media messages[J]. International Journal of Geographical Information Science, 2023, 37(11): 2289-2318.
|
[22] |
FU L, WENG Z Q, ZHANG J H, et al. MMBERT: A unified framework for biomedical named entity recognition[J]. Medical & Biological Engineering & Computing, 2023, 62(1): 327-341.
|
[23] |
江叶峰, 孙少华, 仇晨光, 等. 电网故障处置预案文本中的命名实体识别研究[J]. 电力工程技术, 2021, 40(5): 177-183.
|
|
JIANG Yefeng, SUN Shaohua, QIU Chenguang, et al. Named entity recognition in power fault disposal preplan text[J]. Electric Power Engineering Technology, 2021, 40(5): 177-183.
|
[24] |
徐会芳, 张中浩, 谈元鹏, 等. 面向电网调度领域的实体识别技术[J]. 电力建设, 2021, 42(10): 71-77.
doi: 10.12204/j.issn.1000-7229.2021.10.008
|
|
XU Huifang, ZHANG Zhonghao, TAN Yuanpeng, et al. Research on entity recognition technology in power grid dispatching field[J]. Electric Power Construction, 2021, 42(10): 71-77.
doi: 10.12204/j.issn.1000-7229.2021.10.008
|
[25] |
郑闯. 电网智能客服问答系统设计与实现[D]. 沈阳: 中国科学院大学(中国科学院沈阳计算技术研究所), 2022.
|
|
ZHENG Chuang. Design and implementation of intelligent customer service Q & A system for power grid[D]. Shenyang: Shenyang Institute of Computing Technology, Chinese Academy of Sciences, 2022.
|
[26] |
陈庆, 柳雨生, 段练达, 等. 大语言模型融合知识图谱的风电运维问答系统研究[J]. 综合智慧能源, 2024, 46(9):61-68.
doi: 10.3969/j.issn.2097-0706.2024.09.008
|
|
CHEN Qing, LIU Yusheng, DUAN Lianda, et al. Research on a wind power operation and maintenance Q & A system based on large language models and knowledge graphs[J]. Integrated Intelligent Energy, 2024, 46(9):61-68.
doi: 10.3969/j.issn.2097-0706.2024.09.008
|
[27] |
林凌云, 陈青, 金磊, 等. 基于知识图谱的变电站告警信息故障知识表示研究与应用[J]. 电力系统保护与控制, 2022, 50(12): 90-99.
|
|
LIN Lingyun, CHEN Qing, JIN Lei, et al. Research and application of substation alarm signal fault knowledge representation based on knowledge graph[J]. Power System Protection and Control, 2022, 50(12): 90-99.
|
[28] |
唐焕玲, 卫红敏, 王育林, 等. 结合LDA与Word2vec的文本语义增强方法[J]. 计算机工程与应用, 2022, 58(13):135-145.
doi: 10.3778/j.issn.1002-8331.2112-0491
|
|
TANG Huanling, WEI Hongmin, WANG Yulin, et al. Text semantic enhancement method combining LDA and Word2Vec[J]. Computer Engineering and Applications, 2022, 58(13): 135-145.
doi: 10.3778/j.issn.1002-8331.2112-0491
|
[29] |
LIU C, SUN K J, ZHOU Q Q, et al. CPMI-ChatGLM: parameter-efficient fine-tuning ChatGLM with Chinese patent medicine instructions[J]. Scientific Reports, 2024, 14(1): 6403.
doi: 10.1038/s41598-024-56874-w
pmid: 38493251
|
[30] |
SU J L, MURTADHA A, PAN S F, et al. Global pointer: novel efficient span-based approach for named entity recognition[EB/OL].(2022-08-06)[2024-09-05]. https://arxiv.org/abs/2208.03054v1.
|
[31] |
HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL].(2015-08-09) [2024-09-05]. https://arxiv.org/abs/1508.01991v1.
|
[32] |
WAN T Y, WANG W H, ZHOU H. Research on information extraction of municipal solid waste crisis using BERT-LSTM-CRF[C]// Proceedings of the 4th International Conference on Natural Language Processing and Information Retrieval. ACM, 2020: 205-209.
|