综合智慧能源 ›› 2024, Vol. 46 ›› Issue (2): 1-11.doi: 10.3969/j.issn.2097-0706.2024.02.001
• 配电网与人工智能 • 下一篇
李成雲a,b(), 杨东升a,b(
), 周博文a,b(
), 杨波a,b(
), 李广地a,b(
)
收稿日期:
2023-04-03
修回日期:
2023-05-05
出版日期:
2024-02-25
作者简介:
李成雲(1998),女,博士生,从事电力系统数字孪生建模方面的研究,17367911495@163.com;基金资助:
LI Chengyuna,b(), YANG Dongshenga,b(
), ZHOU Bowena,b(
), YANG Boa,b(
), LI Guangdia,b(
)
Received:
2023-04-03
Revised:
2023-05-05
Published:
2024-02-25
Supported by:
摘要:
随着“双碳”目标的提出,大规模的清洁能源、电力电子设备和新型负荷将接入电力系统,传统的电力系统管理控制模式难以应对双侧随机性、波动性增强等问题,电力系统的安全稳定运行迎来巨大挑战。数字孪生技术作为重要的数字化手段,成为电力系统转型升级新方法。针对新型电力系统内在机理发生的深刻复杂变化,综述了数字孪生的发展历程以及其在电力系统领域的研究现状,并从新型电力系统数字化需求、数字建模方法、数字化平台建设3个层面研究了电力系统数字化转型进程。最终,提出了以数字孪生技术为核心的新型电力系统建模方法和框架。
中图分类号:
李成雲, 杨东升, 周博文, 杨波, 李广地. 基于数字孪生技术的新型电力系统数字化[J]. 综合智慧能源, 2024, 46(2): 1-11.
LI Chengyun, YANG Dongsheng, ZHOU Bowen, YANG Bo, LI Guangdi. Digitization of new-type electric power systems based on digital twin technology[J]. Integrated Intelligent Energy, 2024, 46(2): 1-11.
[1] | 张英杰. 构建以新能源为主体的新型电力系统的发展路径研究[J]. 电工技术, 2022(18):172-174,178. |
ZHANG Yingjie. Research on the development path of building a new electric power system based on new energy sources[J]. Electric Engineering, 2022 (18):172-174,178. | |
[2] | 高贵刚. 新能源风光发电预测技术进展综述[J]. 电工技术, 2022 (20):49-52. |
GAO Guigang. Review of the progress in forecasting technology for new energy wind and solar power generation[J]. Electric Engineering, 2022(20):49-52. | |
[3] | 金丽娜. 新型电力系统稳定性问题探讨[J]. 科技创新与应用, 2022, 12(32): 146-149. |
JIN Lina. Discussion on stability of new power systems[J]. Technology Innovation and Application, 2022, 12(32):146-149. | |
[4] | 王继业. 能源互联网的理论研究和技术布局[R]. 第六届中国电力发展和技术创新院士论坛, 2020. |
[5] |
侯鲁洋, 葛磊蛟, 王飚, 等. 面向新型产消者的综合能源系统和电力市场研究[J]. 综合智慧能源, 2022, 44(12): 40-48.
doi: 10.3969/j.issn.2097-0706.2022.12.006 |
HOU Luyang, GE Leijiao, WANG Biao, et al. Research on the integrated energy system and the electricity market towards new prosumers[J]. Integrated Intelligent Energy, 2022, 44(12): 40-48.
doi: 10.3969/j.issn.2097-0706.2022.12.006 |
|
[6] | 新华社. 中共中央国务院印发《数字中国建设整体布局规划》[R/OL].(2023-02-27)[2023-03-20].https://www.gov.cn/xinwen/2023-02/27/content_5743484.htm. |
[7] | 中国南方电网股份有限公司(CSG). 数字电网白皮书[R/OL].(2020-11-13)[2023-03-20].https://www.ceppc.org.cn/fzdt/hyqy/2020-11-19/918.html. |
[8] | GRIEVES M. Digital twin: Manufacturing excellence through virtual factory replication[EB/OL].(2015-04-20)[2023-03-20].https://www.researchgate.net/profile/Michael-Grieves/publication/275211047_Digital_Twin_Manufacturing_Excellence_through_Virtual_Factory_Replication/links/5535186a0cf23947bc0b17fa/Digital-Twin-Manufacturing-Excellence-through-Virtual-Factory-Replication.pdf. |
[9] | 杨一帆, 邹军, 石明明, 等. 数字孪生技术的研究现状分析[J]. 应用技术学报, 2022, 22(2):176-184,188. |
YANG Yifan, ZOU Jun, SHI Mingming, et al. Analysis of the research status of digital twin technology[J]. Journal of Technology, 2022, 22(2):176-184,188. | |
[10] | 吴雁, 王晓军, 何勇, 等. 数字孪生在制造业中的关键技术及应用研究综述[J]. 现代制造工程, 2021(9):137-145. |
WU Yan, WANG Xiaojun, HE Yong, et al. Review on the technology and application of digital twin in manufacturing industry[J]. Modern Manufacturing Engineering, 2021(9):137-145. | |
[11] | China Electronics Standardization Institute. Digital twin application white paper[R]. China Hi-tech Fair, 2020. |
[12] | GLAESSGEN E, STARGEL D. The digital twin paradigm for future NASA and US air force vehicles[C]// 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. 2012:1818 |
[13] | RIOS J, HERNANDEZ J C, OLIVA M, et al. Product avatar as digital counterpart of a physical individual product: Literature review and implications in an aircraft[C]//22nd ISPE International Conference on Concurrent Engineering. 2015. |
[14] |
MONOSTORI L, KADAR B, BAUERNHANSL T, et al. Cyber-physical systems in manufacturing[J]. CIRP Annals, 2016, 65(2):621-641.
doi: 10.1016/j.cirp.2016.06.005 |
[15] | AUTIOSALO J. Platform for industrial internet and digital twin focused education, research, and innovation: Ilmatar the overhead crane[C]//2018 IEEE 4th World Forum on Internet of Things (WF-IoT). 2018. |
[16] | GRAESSLER I, POEHLER A. Integration of a digital twin as human representation in a scheduling procedure of a cyber-physical production system.[C]//IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). 2017:289-293. |
[17] | ALAM K M, SADDIK A. C2PS: A digital twin architecture reference model for the cloud-based cyber-physical systems[J]. IEEE Access. 2017(5): 2050-2062. |
[18] | CIAVOTTA M, ALGE M, MENATO S, et al. A microservice-based middleware for the digital factory[J]. Procedia Manufacturing, 2017(11): 931-938. |
[19] | TAO F, SUI F Y, LIU A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research, 2018(1): 1-19. |
[20] |
范仲鸣, 纪陵, 张晓瑞. 配电系统电力设备数字孪生底座系统设计[J]. 综合智慧能源, 2023, 45(3): 50-56.
doi: 10.3969/j.issn.2097-0706.2023.03.007 |
FAN Zhongming, JI Ling, ZHANG Xiaorui. Design of a base system for power equipment in a distribution system based on digital twin[J]. Integrated Intelligent Energy, 2023, 45(3): 50-56.
doi: 10.3969/j.issn.2097-0706.2023.03.007 |
|
[21] | 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019 (1):1-18. |
TAO Fei, LIU Weiran, ZHANG Meng, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019(1):1-18. | |
[22] | 沈沉, 陈颖, 黄少伟, 等. 新型电力系统仿真应用软件设计理念与发展路径[J]. 电力系统自动化, 2022, 46(10):75-86. |
SHEN Chen, CHEN Ying, HUANG Shaowei, et al. Design idea and development path of simulation application software for new power system[J]. Automation of Electric Power Systems, 2022, 46(10):75-86. | |
[23] | PENG Y Z, ZHAO S, WANG H. A digital twin based estimation method for health indicators of DC-DC converters[J]. IEEE Transactions on Power Electronics, 2021(36): 2105-2118. |
[24] | DELUSSU F, MANZIONE D, MEO R. Experiments and comparison of digital twinning of photovoltaic panels by machine learning models and a cyber-physical model in Modelica[J]. IEEE Transactions on Industrial Informatics, 2022(18): 4018-4028. |
[25] | WANG J J, YE L K, GAO X R. Digital twin for rotating machinery fault diagnosis in smart manufacturing[J]. International Journal of Production Research, 2019(57): 3920-3934. |
[26] | LEI Z C, ZHOU H, HU W S, et al. Toward a web-based digital twin thermal power plant[J]. IEEE Transactions on Industrial Informatics, 2022 (18):180-195. |
[27] | ZHOU M, YAN J, FENG D. Digital twin framework and its application to power grid online analysis[J]. CSEE Journal of Power and Energy Systems, 5(3): 391-398. |
[28] | TAO F, QI Q L, WANG L H, et al. Digital twins and cyber-physical systems toward smart manufacturing and industry 4.0:Correlation and comparison[J]. Engineering, 2019 (5):653-661. |
[29] |
AGOSTINELLI S, CUMO F, GUIDI G, et al. Cyber-physical systems improving building energy management: Digital twin and artificial intelligence[J]. Energies, 2021, 14(8):2338.
doi: 10.3390/en14082338 |
[30] | CLEENWERCK R, AZAIOUD H, CLAEYS R, et al. An approach to the impedance modelling of low-voltage cables in digital twins[J]. Electric Power Systems Research, 2022, 210:1-9. |
[31] | 张晋宾. 双碳战略下的能源转型与数字化转型[J]. 自动化博览, 2022,(11):36-39. |
ZHANG Jinbin. Energy transition and digital transformation under the carbon peaking & neutrality strategy[J]. Automation Panorama, 2022 (11):36-39. | |
[32] | 周佩朋, 孙华东, 项祖涛, 等. 大规模电力系统仿真用新能源场站模型结构及建模方法研究(三):电磁暂态模型[J]. 中国电机工程学报, 2023, 43(8):2990-3000. |
ZHOU Peipeng, SUN Huadong, XIANG Zutao, et al. Research on model structures and modeling methods of renewable energy stations for large-scale power system simulation (Ⅲ):Electromagnetic transient models[J]. Proceedings of the CSEE, 2023, 43(8):2990-3000. | |
[33] | 董梓童, 苏南. 数字化高新技术牵引新型电力系统建设[N]. 中国能源报, 2023-02-27(007). |
[34] | 况静, 兰洲, 杨恺, 等. 含风光水多源互补电力系统的分布式抽蓄选址定容与优化调度[J]. 能源工程, 2022(4):21-27. |
KUANG Jing, LAN Zhou, YANG Kai, et al. Distributed pumped storage location selection and optimal dispatch of multi-source power system containing wind,PV and hydropower[J]. Energy Engineering, 2022(4):21-27. | |
[35] |
葛磊蛟, 崔庆雪, 李明玮, 等. 面向低碳经济运行的新型电力系统态势感知技术综述[J]. 综合智慧能源, 2023, 45(1):1-13.
doi: 10.3969/j.issn.2097-0706.2023.01.001 |
GE Leijiao, CUI Qingxue, LI Mingwei, et al. Review on situational awareness technology in a low-carbon oriented new power system[J]. Integrated Intelligent Energy, 2023, 45(1): 1-13.
doi: 10.3969/j.issn.2097-0706.2023.01.001 |
|
[36] | 刘康先. 基于数字化转型的新型电力系统构建[J]. 应用能源技术, 2022(2):7-11. |
LIU Kangxian. Construction of new power system based on digital transformation[J]. Applied Energy Technology, 2022(2):7-11. | |
[37] | 周一辰, 孙佳辉, 李永刚, 等. 一种概率-Voronoi自适应高维模型表达的新能源电力系统小干扰失稳风险评估方法[J/OL]. 中国电机工程学报, 2023. DOI:10.13334/j.0258-8013.pcsee.222201. |
ZHOU Yichen, SUN Jiahui, LI Yonggang, et al. A probabilistic-voronoi adaptive high-dimensional model to evaluate small signal instability risk of renewable power system[J/OL]. Proceedings of the CSEE, 2023. DOI:10.13334/j.0258-8013.pcsee.222201. | |
[38] | 刘佳宁. 高比例风光并网系统稳定机理与功率振荡分析[D]. 杭州: 浙江大学, 2022. |
LIU Jianing. Power system planning considering demand response resources and capacity value of energy storage[D]. Hangzhou: Zhejiang University, 2022. | |
[39] | 张后谊, 古庭赟, 高吉普, 等. 高比例新能源电网下的光伏电站谐波分析与治理[J]. 电力大数据, 2022, 25(8):20-28. |
ZHANG Houyi, GU Tingzan, GAO Jipu, et al. Harmonic analysis and treatment of photovoltaic power stations under high proportion of new energy grid[J]. Power Systems and Big Data, 2022, 25(8):20-28. | |
[40] | 陈炎森, 王鹏宇, 杨义, 等. 基于混合自动机的综合能源系统状态转移空间建模[J]. 南方电网技术, 2023, 17(1):103-113. |
CHEN Yansen, WANG Pengyu, YANG Yi, et al. State transition space modeling of integrated energy systems based on hybrid automata[J]. Southern Power System Technology, 2023, 17(1):103-113. | |
[41] | 孙华东, 李佳豪, 李文锋, 等. 大规模电力系统仿真用新能源场站模型结构及建模方法研究(一):模型结构[J]. 中国电机工程学报, 2023, 43(4):1378-1388. |
SUN Huadong, LI Jiahao, LI Wenfeng, et al. Research on model structures and modeling methods of renewable energy station for large-scale power system simulation (Part Ⅰ):Model structure[J]. Proceedings of the CSEE, 2023, 43(4):1378-1388. | |
[42] | 孙华东, 李佳豪, 李文锋, 等. 大规模电力系统仿真用新能源场站模型结构及建模方法研究(二):机电暂态模型[J]. 中国电机工程学报, 2023, 43(6):2190-220. |
SUN Huadong, LI Jiahao, LI Wenfeng, et al. Research on model structures and modeling methods of renewable energy station for large-scale power system simulation (Ⅱ): Electromechanical transient model[J]. Proceedings of the CSEE, 2023, 43(6):2190-2202. | |
[43] | 陈乔, 钱一民, 丁凯, 等. 考虑风机故障穿越特性的风电场建模仿真方法研究[J]. 湖北电力, 2022, 46(4):65-74. |
CHEN Qiao, QIAN Yimin, DING Kai, et al. Research on modeling and simulation method of wind farm considering fault ride-through characteristics of wind turbines[J]. Hubei Electric Power, 2022, 46(4):65-74. | |
[44] | 张峰, 游欢欢, 丁磊. 新能源一次调频死区影响机理建模及系数修正策略[J]. 电力系统自动化, 2023, 47(6):158-167. |
ZHANG Feng, YOU Huanhuan, DING Lei. Influential mechanism modelling of dead band in primary frequency regulation of renewable energy and its coefficient correction strategy[J]. Automation of Electric Power Systems, 2023, 47(6):158-167. | |
[45] | 乔志杰, 马临超. 适用于电力系统稳定性提升的大规模储能控制策略研究[J]. 高压电器, 2022, 58(12):75-84,91. |
QIAO Zhijie, MA Linchao. Research on large-scale energy storage control strategy for power system stability improvement[J]. High Voltage Apparatus, 2022, 58(12):75-84,91. | |
[46] |
赖启平, 肖谭南, 李东晟, 等. 基于微分神经网络的风电机群低电压穿越特性建模[J]. 系统仿真学报, 2022 (12):2546-2556.
doi: 10.16182/j.issn1004731x.joss.22-FZ0928 |
LAI Qiping, XIAO Tannan, LI Dongsheng, et al. Low voltage ride through modeling for wind turbines based on neural ODEs[J]. Journal of System Simulation, 2022(12):2546-2556.
doi: 10.16182/j.issn1004731x.joss.22-FZ0928 |
|
[47] | 张彦, 罗宁, 卢嗣斌. 基于大数据分析的大规模电网电源规划方法研究[J]. 自动化技术与应用, 2022(7):159-162. |
ZHANG Yan, LUO Ning, LU Sibin. Research on large-scale power grid power planning method based on big data analysis[J]. Techniques of Automation and Applications, 2022(7):159-162. | |
[48] | FAN L L, MIAO Z X, SHAH S, et al. Data-driven dynamic modeling in power systems: A fresh look on inverter-based resource modeling[J]. IEEE Power & Energy Magazine, 2022(20): 64-76. |
[49] | LIU Y T, LI Z S, ZHOU Y, et al. Data-driven-aided linear three-phase power flow model for distribution power systems[J]. IEEE Transactions on Power Systems, 2022(37):2783-2795. |
[50] | MA R, BASUMALLIK S, EFTEKHARNEJAD S, et al. A data-driven model predictive control for alleviating thermal overloads in the presence of possible false data[J]. IEEE Transactions on Industry Applications, 2021(57):1872-1881. |
[51] | 王立强, 丛雨, 曹斌, 等. 风光储联合发电系统数模混合仿真分析[J]. 内蒙古电力技术, 2022 (4):21-26. |
WANG Liqiang, CONG Yu, CAO Bin, et al. Digital-analog hybrid simulation analysis of wind-solar-storage hybrid generation system[J]. Inner Mongolia Electric Power, 2022 (4):21-26. | |
[52] | 江叶峰, 熊浩, 付伟. 基于特征模型的电力系统在线动态等效建模[J]. 河海大学学报(自然科学版), 2022 (5):139-146. |
JIANG Yefeng, XIONG Hao, FU Wei. Online dynamic equivalent modeling of power system based on characteristic model[J]. Journal of Hohai University (Natural Sciences), 2022 (5):139-146. | |
[53] | ZHOU J S, CHEN Y T, RAN L, et al. Hybrid data-driven modeling for an AC/DC power system considering renewable energy uncertainty[J]. Frontiers In Energy Research. 2022(10). DOI:10.3389/FENRG.2022.830833. |
[54] | LI Z, GAO Y, ZHANG X, et al. A model-data-hybrid-driven diagnosis method for open-switch faults in power converters[J]. IEEE Transactions on Power Electronics, 2021(36): 4965-4970. |
[55] | KAMEL M, DAI R C, WANG Y W, et al. Data-driven and model-based hybrid reinforcement learning to reduce stress on power systems branches[J]. CSEE Journal of Power and Energy Systems, 2021(7): 433-442. |
[56] | HUGHES W, ZHANG W, CERRAI D, et al. A hybrid physics-based and data-driven model for power distribution system infrastructure hardening and outage simulation[J]. Reliability Engineering & System Safety, 2022(225). DOI:10.1016/J.RESS.2022.108628. |
[57] | GHIMIRE P, KARIMI S, ZADEH M, et al. Model-based efficiency and emissions evaluation of a marine hybrid power system with load profile[J]. Electric Power Systems Research, 2022, 212 :1-7. |
[58] | GUO R Y, LIU H. A hybrid mechanism and data-driven soft sensor based on the generative adversarial network and gated recurrent unit[J]. IEEE Sensors Journal, 2021(21):25901-25911. |
[59] | 曹斌, 原帅, 辛东昊. 基于CloudPSS-RT和RT-Lab联合实时仿真平台的在线阻抗分析装置设计[J]. 电子技术应用, 2022, 48(1):53-58. |
CAO Bin, YUAN Shuai, XIN Donghao. An online impedance analysis device based on CloudPSS-RT and RT-Lab co-simulation test bench[J]. High Performance Computing, 2022, 48(1):53-58. | |
[60] | 侯婕. 基于RTDS的数字化变电站保护测试方案[J]. 电世界, 2019(7):1-7. |
HOU Jie. Digital substation protection test scheme based on RTDS[J]. Electrical World, 2019(7):1-7. | |
[61] | 郝腾飞, 李军锋, 李晓莹, 等. 三维虚拟仿真技术在电力设备设计中的应用[J]. 现代电子技术, 2018(14):51-54. |
HAO Tengfei, LI Junfeng, LI Xiaoying, et al. Application of 3D virtual simulation technology in power equipment design[J]. Modern Electronics Technique, 2018(14):51-54. | |
[62] | ELKADRAGY M M, ALICI M, ALSERSY A, et al. Off-grid and decentralized hybrid renewable electricity systems data analysis platform (OSDAP) A building block of a comprehensive techno-economic approach based on contrastive case studies in Sub-Saharan Africa and Canada[J]. Journal of Energy Storage, 2021, 34(5).DOI:10.1016/j.est.2020.101965. |
[63] | HAN J X, HONG Q T, FENG Z W, et al. Design and implementation of a real-time hardware-in-the-loop platform for prototyping and testing digital twins of distributed energy resources[J]. Energies, 2022, 15(18). DOI:10.3390/EN15186629. |
[64] | XIONG J W, YE H, PEI W, et al. A monitoring and diagnostics method based on FPGA-digital twin for power electronic transformer[J]. Electric Power Systems Research, 2022, 210:1-10. |
[65] | MILLER A M, ALVAREZ R, HARTMAN N. Towards an extended model-based definition for the digital twin[J]. Computer-Aided Design & Applications, 2018, 15(6):880-891. |
[66] | HAO X Z, LI Y G, CHENG Y H, et al. A time-varying geometry modeling method for parts with deformation during machining process[J]. Journal of Manufacturing Systems, 2020(55):15-29. |
[67] |
周博文, 奚超, 李广地, 等. 元宇宙在电力系统中的应用[J]. 发电技术, 2022, 43(1):1-9.
doi: 10.12096/j.2096-4528.pgt.21144 |
ZHOU Bowen, XI Chao, LI Guangdi, et al. Metaverse application in power systems[J]. Power Generation Technology, 2022, 43(1):1-9.
doi: 10.12096/j.2096-4528.pgt.21144 |
|
[68] | 杨茗迪. 基于数字孪生技术在电网运行调度的应用研究[J]. 东北电力技术, 2023, 44(7):15-18. |
YANG Mingdi. Application and research of power grid operation scheduling based on digital twin technology[J]. Northeast Electric Power Technology, 2023, 44(7):15-18. | |
[69] | 王文. 基于多传感器数据融合的高压断路器操动机构温湿度在线监测装置的研究[J]. 东北电力技术, 2022, 43(2):17-19. |
WANG Wen. Research on temperature and humidity online monitoring device for operating mechanism of high voltage circuit breaker based on multi-sensor data fusion[J]. Northeast Electric Power Technology, 2022, 43(2):17-19. | |
[70] | 马兴明, 董成, 毛新宇, 等. 基于状态估计的海量多元异构智能电网数据压缩存储方法[J]. 电机与控制应用, 2023, 50 (2):67-72,81. |
MA Xingming, DONG Cheng, MAO Xinyu, et al. Data compression and storage method of massive multivariate heterogeneous smart grid based on state estimation[J]. Electric Machines & Control Application, 2023, 50(2):67-72,81. |
[1] | 李菲菲, 徐绘薇, 崔金栋. 基于STIRPAT模型的吉林省石化行业碳排放影响因素研究[J]. 综合智慧能源, 2024, 46(8): 12-19. |
[2] | 李菲菲, 王舒泓, 崔金栋. 全生命周期视角下汽车产业碳排放影响因素的研究——以吉林省为例[J]. 综合智慧能源, 2024, 46(8): 20-27. |
[3] | 王泽宁, 李文中, 李东辉, 徐泰山, 俞俊. 基于软件定义的新型电力系统分层自治电力平衡模式研究[J]. 综合智慧能源, 2024, 46(7): 1-11. |
[4] | 何方波, 裴力耕, 郑睿, 范康健, 张晓曼, 李更丰. “源网荷储”协同助力陕西省新型电力系统建设[J]. 综合智慧能源, 2024, 46(7): 40-46. |
[5] | 黄晓凡, 李佳瑞, 刘晖, 汤效平, 王兹尧, 王彤. 梯次利用动力电池储能系统综合效益分析[J]. 综合智慧能源, 2024, 46(7): 63-73. |
[6] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[7] | 郁海彬, 卢闻州, 唐亮, 张煜晨, 邹翔宇, 姜玉靓, 刘嘉宝. 考虑风险偏好的多主体虚拟电厂经济调度与收益分配策略[J]. 综合智慧能源, 2024, 46(6): 66-77. |
[8] | 王亮, 邓松. 面向新型电力系统的异常数据检测方法[J]. 综合智慧能源, 2024, 46(5): 12-19. |
[9] | 俞胜, 周霞, 沈希澄, 戴剑丰, 刘增稷. 考虑网络攻击影响的源网荷储系统风险评估[J]. 综合智慧能源, 2024, 46(5): 41-49. |
[10] | 龚钢军, 王路遥, 常卓越, 柳旭, 邢汇笛. 基于能源枢纽的综合能源信息物理系统安全防护架构研究[J]. 综合智慧能源, 2024, 46(5): 65-72. |
[11] | 王永利, 王亚楠, 马子奔, 秦雨萌, 陈锡昌, 滕越. 面向区块链技术应用的能源交易系统效果评价[J]. 综合智慧能源, 2024, 46(4): 78-84. |
[12] | 孙健, 张云帆, 蔡潇龙, 刘鼎群. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19. |
[13] | 丁乐言, 柯松, 杨军, 施兴烨. 基于自适应控制参数整定的虚拟同步发电机控制策略[J]. 综合智慧能源, 2024, 46(3): 35-44. |
[14] | 苑曙光, 张瑜婷, 王峰, 苑广震. 蒙西地区规模化储能商业运行模式及风险分析[J]. 综合智慧能源, 2024, 46(3): 63-71. |
[15] | 张心怡, 杨波. 考虑构网型和跟网型变流器的孤岛微电网小信号稳定性分析[J]. 综合智慧能源, 2024, 46(2): 12-18. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||