[1] |
郝庆福, 刘延泉, 王坤. 风电厂风能资源分析与评价[J]. 华电技术, 2010, 32(8):76-79.
|
|
HAO Qingfu, LIU Yanquan, WANG Kun. Analysis and evaluation of wind energy resource of wind power plant[J]. Huadian Technology, 2010, 32(8): 76-79.
|
[2] |
李宏剑. 挡风墙挡风抑尘效果数值模拟研究[D]. 杭州: 浙江大学, 2007.
|
|
LI Hongjian. Numerical simulation study on windbreak dust suppression effect of windbreak wall[D]. Hangzhou: Zhejiang University, 2007.
|
[3] |
田美荣, 傅馨逸, 杨伟超, 等. 挡风墙设计及其在呼伦贝尔沙地治理中的应用[J]. 环境工程技术学报, 2021, 11(5):970-975.
|
|
TIAN Meirong, FU Xinyi, YANG Weichao, et al. Windbreak design and its application in Hulunbeier sand management[J]. Journal of Environmental Engineering Technology, 2021, 11(5): 970-975.
|
[4] |
张大千, 吴康宁. 挡风墙对近地面光伏板风压的影响研究[J]. 沈阳航空航天大学学报, 2020, 37(3):12-23.
|
|
ZHANG Daqian, WU Kangning. Research on the effect of windbreak on wind pressure of near‑surface photovoltaic panels[J]. Journal of Shenyang University of Aeronautics and Astronautics, 2020, 37(3): 12-23.
|
[5] |
罗智慧, 龙新峰. 槽式太阳能热发电技术研究现状与发展[J]. 电力设备, 2006, 7(11): 29-32.
|
|
LUO Zhihui, LONG Xinfeng. Research status and development of trough solar thermal power generation technology[J]. Power Equipment, 2006, 7(11): 29-32.
|
[6] |
孙建, 塔拉, 布仁, 等. 槽式太阳能集热与燃煤发电机组联合运行系统构建[J]. 内蒙古电力技术, 2020, 38(2):57-61.
|
|
SUN Jian, TA La, BU Ren, et al. Construction of joint operation system of trough solar thermal collector and coalfired generating unit[J]. Inner Mongolia Power Technology, 2020, 38(2): 57-61.
|
[7] |
WANG Z W, DONG G D, LI Z B, et al. Statistics of wind farm wakes for different layouts and ground roughness[J]. Boundary‑Layer Meteorol, 2023, 188: 285-320.
|
[8] |
ZHANG H, GE M W, LIU Y Q, et al. A new coupled model for the equivalent roughness heights of wind farms[J]. Renewable Energy, 2021, 171: 34-46.
|
[9] |
KETHAVATH N N, MONDAL K, GHAISAS N S. Large‑eddy simulation and analytical modeling study of the wake of a wind turbine behind an abrupt rough‑to‑smooth surface roughness transition[J]. Physics of Fluids, 2022, 34(12): 125117.
|
[10] |
TOBIN N, CHAMORRO L P. Windbreak effects within infinite wind farms[J]. Energies, 2017, 10(8):1140.
|
[11] |
LIU L Q, STEVENS R J A M. Enhanced wind-farm performance using windbreaks[J]. Physical Review Fluids, 2021, 6(7): 074611.
|
[12] |
MAHGOUB A O, GHANI S. Numerical and experimental investigation of utilizing the porous media model for windbreaks CFD simulation[J]. Sustainable Cities and Society, 2021, 65: 102648.
|
[13] |
LYU J W, WANG C M, MASON M S. Review of models for predicting wind characteristics behind windbreaks[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 199:104117.
|
[14] |
张十权, 李鹏俊, 李铭轩, 等. 一种挡风抑尘墙及光煤互补发电系统:CN202222841100. X[P]. 2023-04-25[2023-09-08].
|
[15] |
李家乐, 赵文举, 严正. 基于CFD的挡风墙防风效果仿真[J]. 排灌机械工程学报, 2020, 38(6):620-625.
|
|
LI Jiale, ZHAO Wenju, YAN Zheng. Simulation of wind protection effect of windbreak wall based on CFD[J]. Journal of Drainage and Irrigation Machinery Engineering, 2020, 38(6): 620-625.
|
[16] |
周书华. 防风墙可提高风电场的功率[J]. 物理, 2021, 50(9):633.
|
|
ZHOU Shuhua. Windbreaks can increase the power of wind farms[J]. Physics, 2021, 50(9): 633.
|
[17] |
ZHUO C X, TONG X, HAO B E. Feasibility analysis using a porous‑media model to simulate the wind protection effect of windbreak forests[J]. Land Degradation & Development, 2022, 34(1): 207-220.
|
[18] |
LI Y L, LI Z B, ZHOU Z D, et al. Large‑eddy simulation of wind turbine wakes in forest terrain[J]. Sustainability, 2023, 15(6): 5139.
|
[19] |
NATRAJ, RAO B N, REDDY K S. Wind load and structural analysis for standalone solar parabolic trough collector[J]. Renewable Energy, 2021, 173: 688-703.
|
[20] |
MIER-T0RRECILLA M, HERRERA E M, DOBLARE M. Numerical calculation of wind loads over solar collectors[J]. Energy Procedia, 2014, 49: 163-173.
|