[1] |
曹加锋, 李欣然, 邵善德, 等. 质子陶瓷燃料电池稳定性研究综述[J]. 综合智慧能源, 2022, 44(8): 58-67.
doi: 10.3969/j.issn.2097-0706.2022.08.006
|
|
CAO Jiafeng, LI Xinran, SHAO Shande,et al. Review on the study of protonic ceramic fuel cells' stability[J]. Integrated Intelligent Energy, 2022, 44(8): 58-67.
doi: 10.3969/j.issn.2097-0706.2022.08.006
|
[2] |
JIANG L, WEI T, ZENG R, et al. Thermal and electrochemical properties of PrBa0.5Sr0.5Co2-xFexO5+δ(x = 0.5,1.0,1.5) cathode materials for solid-oxide fuel cells[J]. Journal of Power Sources, 2013, 232: 279-285.
|
[3] |
ZHU C J, LIU X M, YI C S, et al. Electrochemical performance of PrBaCo2O5+δ layered perovskite as an intermediate-temperature solid oxide fuel cell cathode[J]. Journal of Power Sources, 2008, 185(1): 193-196.
|
[4] |
XIA C, LIU M. Novel cathodes for low-temperature solid oxide fuel cells[J]. Advanced Materials, 2002, 14(7):521-523.
|
[5] |
PARK S, VOHS J M, GORTE R J. Direct oxidation of hydrocarbons in a solid‐oxide fuel cell[J]. Nature, 2000, 404(6775):265-267.
|
[6] |
杨莹, 张雁祥, 闫牧夫. 中低温固体氧化物燃料电池电解质制备方法研究进展[J]. 综合智慧能源, 2022, 44(8):50-57.
doi: 10.3969/j.issn.2097-0706.2022.08.005
|
|
YANG Ying, ZHANG Yanxiang, YAN Mufu. Research progress on preparation methods of medium and low temperature SOFC electrolytes[J]. Integrated Intelligent Energy, 2022, 44(8): 50-57.
doi: 10.3969/j.issn.2097-0706.2022.08.005
|
[7] |
陈茜, 金莹, 马季, 张磊磊, 等. 无钴铁基层状钙钛矿材料作SOFC阴极的研究[J]. 石油化工高等学校学报, 2023, 36(4):69-74.
|
|
CHEN Qian, JIN Ying, MA Ji, et al. Study on cobalt free iron base like perovskite as cathode of SOFC[J]. Journal of Petrochemical Universities, 2023, 36(4): 69-74.
|
[8] |
许阳森, 张磊, 毕磊. 中温质子导体固体氧化物燃料电池的发展与挑战[J]. 综合智慧能源, 2022, 44(8): 68-74.
doi: 10.3969/j.issn.2097-0706.2022.08.007
|
|
XU Yangsen, ZHANG Lei, BI Lei. Development and challenges of intermediate-temperature proton-conducting solid oxide fuel cells[J]. Integrated Intelligent Energy, 2022, 44(8): 68-74.
doi: 10.3969/j.issn.2097-0706.2022.08.007
|
[9] |
PELOSATO R, CORDARO G, STUCCHI D, et al. Cobalt based layered perovskites as cathode material for intermediate temperature solid oxide fuel cells: A brief review[J]. Journal of Power Sources, 2015, 298: 46-67.
|
[10] |
WANG B A, LONG G H, JI Y, et al. Layered perovskite PrBa0.5Sr0.5CoCuO5+δ as a cathode for intermediate-temperature solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2014, 606: 92-96.
|
[11] |
WU Y C, HUANG P Y, XU G. Properties and microstructural analysis of La1-xSrxCoO3-δ(x=0-0.6) cathode materials[J]. Ceramics International, 2017, 43(2):2460-2470.
|
[12] |
ENRICO A, ALIAKBARIAN B, LAGAZZO A, et al. Parameter optimization for the electrospinning of La1-xSrxCo1-yFeyO3-δ fibers for IT-SOFC electrodes[J]. Fuel Cells, 2017, 17(4): 415-422.
|
[13] |
SAHIN M G, MWANKEMWA B S, KANAS N. BaxSr1-xCoyFe1-yO3-δ (BSCF) mixed ionic-electronic conducting (MIEC) materials for oxygen separation membrane and SOFC applications:Insights into processing,stability,and functional properties[J]. Ceramics International, 2022, 48(3): 2948-2964.
|
[14] |
LEE Y L, KLEIS J, ROSSMEISL J, et al. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors[J]. Energy & Environmental Science, 2011, 4(10):3966-3970.
|
[15] |
JUN A, KIM J, SHIN J, et al. Perovskite as a cathode material:A review of its role in solid-oxide fuel cell technology[J]. ChemElectroChem, 2016, 3(4):511-530.
|
[16] |
CHEN D J, RAN R, ZHANG K, et al. Intermediate-temperature electrochemical performance of a polycrystalline PrBaCo2O5+δ cathode on samarium-doped ceria electrolyte[J]. Journal of Power Sources, 2009, 188(1):96-105.
|
[17] |
ZHOU Q J, WANG F, SHEN Y, et al. Performances of LnBaCo2O5+δ-Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells[J]. Journal of Power Sources, 2010, 195(8): 2174-2181.
|
[18] |
ZHAO L, SHEN J, HE B. Synthesis,characterization and evaluation of PrBaCo2-xFexO5+δas cathodes for intermediate-temperature solid oxide fuel cells[J]. International Journal of Hydrogen Energy, 2011, 36(5): 3658-3665.
|
[19] |
ZHOU W, RAN R, SHAO Z. Evaluation of A-site cation-deficient (Ba0.5Sr0.5)1-xCo0.8Fe0.2O3-δ(x>0) perovskite as a solid-oxide fuel cell cathode[J]. Journal of Power Sources, 2008, 182(1): 24-31.
|
[20] |
SEHLIN S R, ANDERSON H U, Sparlin D M. Semiempirical model for the electrical properties of La1-xCaxCoO3[J]. Physical Review B, 1995, 52(16):11681-11689.
pmid: 9980299
|
[21] |
KIM J H, MANTHIRAM A. LnBaCo2O5+δ oxides as cathodes for intermediate-temperature solid oxide fuel cells[J]. Journal of the Electrochemical Society, 2008, 155(4):B385.
|
[22] |
JIN F J, LIU X L, CHU X Y, et al. Effect of nonequivalent substitution of Pr3+/4+with Ca2+in PrBaCoFeO5+δ as cathodes for IT-SOFC[J]. Journal of Materials Science, 2021, 56(2):1147-1161.
|
[23] |
MURRAY E P, SEVER M J, BARNETT S A. Electrochemical performance of (La,Sr)(Co,Fe)O3-(Ce,Gd)O3 composite cathodes[J]. Solid State Ionics, 2002, 148:27-34.
|
[24] |
王盼, 钱伟星, 陈雨婷. 固体氧化物燃料电池Sr(2-x)Pr(x)Fe(1.5)Mo(0.5)O(6-δ)阴极材料的制备与性能[J]. 中国稀土学报, 2024, 42(3):497-502.
|
|
WANG Pan, QIAN Weixing, CHEN Yuting. Solid oxide fuel cell Sr(2-x)Pr(x)Fe(1.5)Mo(0.5)O(6-δ)preparation and properties of cathode materials[J]. Journal of the Chinese Society of Rare Earths, 2024, 42(3):497-502.
|
[25] |
李宁, 李松波, 安胜利, 等. Co掺杂 La1.5Sr0.5Ni1-xCoxO4+δ 阴极材料的制备及其电化学稳定性能[J]. 燃料化学学报(中英文), 2023, 51(4):511-518.
|
|
LI Ning, LI Songbo, AN Shengli, et al.Preparation and electrochemical stability of Co-doped La1.5Sr0.5Ni1-xCoxO4+δ cathode materials[J]. Journal of Fuel Chemistry and Technology, 2023, 51(4): 511-518.
|
[26] |
韩倩雯, 张琨, 陈晓阳, 等. La/Ni共掺杂SrTi0.35Fe0.65O3-δ对称电极用于SOEC共电解H2O/CO2研究[J]. 综合智慧能源, 2022, 44(8): 43-49.
doi: 10.3969/j.issn.2097-0706.2022.08.004
|
|
HAN Qianwen, ZHANG Kun, CHEN Xiaoyang, et al. Study on La/Ni co-doped SrTi0.35Fe0.65O3-δ symmetric electrode for H2O/CO2 co-electrolysis in SOECs[J]. Integrated Intelligent Energy, 2022, 44(8): 43-49.
doi: 10.3969/j.issn.2097-0706.2022.08.004
|
[27] |
KHAN M Z, SONG H R, HUSSAIN A, et al. Effect of applied current density on the degradation behavior of anode-supported flat-tubular solid oxide fuel cells[J]. Journal of the European Ceramic Society, 2020, 40(4): 1407-1417.
|