[1] |
CHEN K, LIU S S, AI N, et al. Why the solid oxide cells can be reversibly operated under solid oxide electrolysis cell and fuel cell modes?[J]. Physical Chemistry Chemical Physics, 2015, 17(46): 31308-31315.
|
[2] |
葛磊蛟, 崔庆雪, 李明玮, 等. 风光波动性电源电解水制氢技术综述[J]. 综合智慧能源, 2022, 44(5): 1-14.
doi: 10.3969/j.issn.2097-0706.2022.05.001
|
|
GE Leijia, CUI Qingxue, LI Mingwei, et al. Review on water electrolysis for hydrogen production powered by fluctuating wind power and PV[J]. Integrated Intelligent Energy, 2022, 44(5): 1-14.
doi: 10.3969/j.issn.2097-0706.2022.05.001
|
[3] |
LI G L, YUAN B F, GE M, et al. Capacity configuration optimization of a hybrid renewable energy system with hydrogen storage[J]. International Journal of Green Energy, 2022: 1-17.
|
[4] |
朱雷杰, 钱彬, 郭凯凯, 等. 核能制氢可再生能源技术研究[J]. 中国资源综合利用, 2023, 41(1):95-98.
|
|
ZHU Leijie, QIAN Bin, GUO Kaikai, et al. Study on renewable energy technology of nuclear hydrogen production[J]. China Resources Comprehensive Utilization, 2023, 41(1): 95-98.
|
[5] |
AKULA P, ESLICK J, BHATTACHARYYA D, et al. Model development, validation, and optimization of an MEA-based post-combustion CO2 capture process under part-load and variable capture operations[J]. Industrial & Engineering Chemistry Research, 2021, 60(14): 5176-5193.
|
[6] |
韩倩雯, 张琨, 陈晓阳, 等. La/Ni共掺杂SrTi0.35Fe0.65O3-δ对称电极用于SOEC共电解H2O/CO2研究[J]. 综合智慧能源, 2022, 44(8): 43-49.
doi: 10.3969/j.issn.2097-0706.2022.08.004
|
|
HAN Qianwen, ZHANG Kun, CHEN Xiaoyang, et al. Study on La/Ni co-doped SrTi0.35Fe0.65O3-δ symmetric electrode for H2O/CO2 co-electrolysis in SOECs[J]. Integrated Intelligent Energy, 2022, 44(8): 43-49.
doi: 10.3969/j.issn.2097-0706.2022.08.004
|
[7] |
SHAO X, BUDIMAN R A, SATO T, et al. Review of factors affecting the performance degradation of Ni-YSZ fuel electrodes in solid oxide electrolyzer cells[J]. Journal of Power Sources, 2024, 609: 234651.
|
[8] |
STOOTS C M, O'BRIEN J E, MCKELLAR M G, et al. Engineering process model for high-temperature electrolysis system performance evaluation[C]// AIChE 2005 Annual Meeting, 2005.
|
[9] |
NI M, LEUNG M K H, LEUNG D Y C. Parametric study of solid oxide steam electrolyzer for hydrogen production[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2305-2313.
|
[10] |
NI M, LEUNG M K H, LEUNG D Y C. Mathematical modeling of the coupled transport and electrochemical reactions in solid oxide steam electrolyzer for hydrogen production[J]. Electrochimica Acta, 2007, 52(24): 6707-6718.
|
[11] |
IORA P, TAHER M A A, CHIESA P, et al. A one dimensional solid oxide electrolyzer-fuel cell stack model and its application to the analysis of a high efficiency system for oxygen production[J]. Chemical Engineering Science, 2012, 80: 293-305.
|
[12] |
MENON V, JANARDHANAN V M, DEUTSCHMANN O. A mathematical model to analyze solid oxide electrolyzer cells(SOECs) for hydrogen production[J]. Chemical Engineering Science, 2014, 110: 83-93.
|
[13] |
UDAGAWA J, AGUIAR P, BRANDON N P. Hydrogen production through steam electrolysis: Model-based dynamic behaviour of a cathode-supported intermediate temperature solid oxide electrolysis cell[J]. Journal of Power Sources, 2008, 180(1): 46-55.
|
[14] |
HAWKES G L, O'BRIEN J E, STOOTS C M, et al. CFD model of a planar solid oxide electrolysis cell for hydrogen production from nuclear energy[J]. Nuclear Technology, 2005, 158(2): 132-144.
|
[15] |
NAVASA M, YUAN J L, SUNDÉN B. Computational fluid dynamics approach for performance evaluation of a solid oxide electrolysis cell for hydrogen production[J]. Applied Energy, 2015, 137: 867-876.
|
[16] |
KANG J, PARK J, BAE J. Three-dimensional numerical analysis of solid oxide electrolysis cells steam electrolysis operation for hydrogen production[J]. Journal of Fuel Cell Science Technology, 2015, 12(5): 51006.
|
[17] |
YAN P Y, CEHNG C H, SU A, et al. Simulation study of hydrogen production through solid oxide electrolysis cell[C]// 2011 International Conference on Electrical and Control Engineering. ICECE, 2011:4075-4078.
|
[18] |
NAPOLI G, FERRARO M, BRUNACCINI G, et al. Data Driven model for a fuel cell stack development in a complex multi-source hybrid renewable energy system[C]// International Conference on Renewable Energies and Power Quality. ICREPQ, 2010:983-988.
|
[19] |
NAPOLI G, FERRARO M, SERGI F, et al. Data driven models for a PEM fuel cell stack performance prediction[J]. International Journal of Hydrogen Energy, 2013, 38(26): 11628-11638.
|
[20] |
WU Y M, BREAZ E, GAO F, et al. A Modified relevance vector machine for PEM fuel-cell stack aging prediction[J]. IEEE Transactions on Industry Applications, 2016, 52(3): 2573-2581.
|
[21] |
HAN I S, CHUNG C B. Performance prediction and analysis of a PEM fuel cell operating on pure oxygen using data-driven models: A comparison of artificial neural network and support vector machine[J]. International Journal of Hydrogen Energy, 2016, 41(24):10202-10211.
|
[22] |
DENG H W, HU W H, CAO D, et al. Degradation trajectories prognosis for PEM fuel cell systems based on Gaussian process regression[J]. Energy, 2022, 244:122569.
|
[23] |
DOLENC B, BOSKOSKI P, STEPANCIC M, et al. State of health estimation and remaining useful life prediction of solid oxide fuel cell stack[J]. Energy Conversion and Management, 2017, 148: 993-1002.
|
[24] |
MARRA D, SORRENTINO M, PIANESE C, et al. A neural network estimator of solid oxide fuel cell performance for on-field diagnostics and prognostics applications[J]. Journal of Power Sources, 2013, 241(1): 320-329.
|
[25] |
WU X J, YE Q W. Fault diagnosis and prognostic of solid oxide fuel cells[J]. Journal of Power Sources, 2016, 321(30): 47-56.
|
[26] |
GRONDIN D, DESEURE J, OZIL P, et al. Solid oxide electrolysis cell 3D simulation using artificial neural network for cathodic process description[J]. Chemical Engineering Research and Design, 2013, 91(1): 134-140.
|
[27] |
CHI Y, YOKOO K, NAKAJIMA H, et al. Optimizing the homogeneity and efficiency of a solid oxide electrolysis cell based on multiphysics simulation and data-driven surrogate model[J]. Journal of Power Sources, 2023, 562: 232760.
|
[28] |
LU X J, ZOU W, HUANG M H. A novel spatiotemporal LS-SVM method for complex distributed parameter systems with applications to curing thermal process[J]. IEEE Transactions on Industrial Informatics, 2017, 12(3): 1156-1165.
|
[29] |
CAI Q, ADJIMAN C S, BRANDON N P. Optimal control strategies for hydrogen production when coupling solid oxide electrolysers with intermittent renewable energies[J]. Journal of Power Sources, 2014, 268: 212-224.
|