[1] |
DEWAR D, GLUSHENKOV A M. Optimisation of sodium-based energy storage cells using pre-sodiation:A perspective on the emerging field[J]. Energy & Environmental Science, 2021, 14(3):1380-1401.
|
[2] |
LIU M, ZHANG J F, SUN Z, et al. Dual mechanism for sodium based energy storage[J]. Small, 2023, 19(15):2206922.
|
[3] |
LI H S, ZHANG X, ZHAO Z C, et al. Flexible sodium-ion based energy storage devices:Recent progress and challenges[J]. Energy Storage Materials, 2020, 26:83-104.
|
[4] |
XU Z, WANG J. Toward emerging sodium-based energy storage technologies:From performance to sustainability[J]. Advanced Energy Materials, 2022, 12(29):2201692.
|
[5] |
VAALMA C, BUCHHOLZ D, WEIL M, et al. A cost and resource analysis of sodium-ion batteries[J]. Nature Reviews Materials, 2018, 3(4):1-11.
|
[6] |
ABRAHAM K M. How comparable are sodium-ion batteries to lithium-ion counterparts?[J]. ACS Energy Letters, 2020, 5(11):3544-3547.
|
[7] |
FANG Y J, XIAO L F, CHEN Z X, et al. Recent advances in sodium-ion battery materials[J]. Electrochemical Energy Reviews, 2018, 1:294-323.
|
[8] |
王青贵, 朱鑫, 王天华, 等. 钠离子电池发展现状[J]. 时代汽车, 2023(12):129-131.
|
|
WANG Qinggui, ZHU Xin, WANG Tianhua, et al. Development status of sodium-ion batteries[J]. Modern Car, 2023(12):129-131.
|
[9] |
XIANG H X, WANG Y J, LI K Q, et al. A comprehensive study on state-of-charge and state-of-health estimation of sodiumion batteries[J]. Journal of Energy Storage, 2023(72):108314.
|
[10] |
FENG Y F, SHEN J N, CHE H Y, et al. State of health prediction for sodium-ion batteries[J]. Energy Storage Science and Technology, 2021, 10(4):1407-1415.
doi: 10.19799/j.cnki.2095-4239.2021.0036
|
[11] |
刘良俊, 高一钊, 朱景哲, 等. 数据驱动的锂离子电池健康状态估计[J]. 电池, 2022, 52(2):157-161.
|
|
LIU Liangjun, GAO Yizhao, ZHU Jingzhe, et al. Data-driven SOH estimation of Li-ion battery[J]. Battery, 2022, 52(2):157-161.
|
[12] |
沈佳妮, 贺益君, 马紫峰. 基于模型的锂离子电池SOC及SOH估计方法研究进展[J]. 化工学报, 2018, 69(1):309-316.
doi: 10.11949/j.issn.0438-1157.20171097
|
|
SHEN Jiani, HE Yijun, MA Zifeng. Progress of model based SOC and SOH estimation methods for lithium-ion battery[J]. CIESC Journal, 2018, 69(1):309-316.
|
[13] |
张金龙, 佟微, 孙叶宁, 等. 锂电池健康状态估算方法综述[J]. 电源学报, 2017, 15(2):128-134.
doi: 10.13234/j.issn.2095-2805.2017.2.128
|
|
ZHANG Jinlong, TONG Wei, SUN Yening, et al. Summarize of lithium battery status of health estimation method[J]. Journal of Power Supply, 2017, 15(2):128-134.
doi: 10.13234/j.issn.2095-2805.2017.2.128
|
[14] |
SUN H L, SUN J R, ZHAO K, et al. Data-driven ICA-Bi-LSTM-combined lithium battery SOH estimation[J]. Mathematical Problems in Engineering, 2022, 2022:9645892.
|
[15] |
周航, 程泽, 弓清瑞, 等. 基于TCN编码的锂离子电池SOH估计方法[J]. 湖南大学学报(自然科学版), 2023, 50(4):185-192.
|
|
ZHOU Hang, CHENG Ze, GONG Qingrui, et al. SOH estimation method of lithium-ion battery based on TCN encoding[J]. Journal of Hunan University (Natural Sciences), 2023, 50(4):185-192.
|
[16] |
张岸, 杨春德. 基于GAN-CNN-LSTM的锂电池SOH估计[J]. 电源技术, 2021, 45(7):902-906.
|
|
ZHANG An, YANG Chunde. SOH estimation of lithium batteries based on GAN-CNN-LSTM[J]. Chinese Journal of Power Sources, 2021, 45(7):902-906.
|
[17] |
田野, 闵锦涛. 基于PSO-XGBoost算法的多衰退特征锂离子电池SOH估计[J]. 电工材料, 2023(1):23-27.
|
|
TIAN Ye, MIN Jintao. SOH prediction of lithium-ion battery with multiple degradation characteristics based on PSO-XGBoost algorithm[J]. Electrical Engineering Materials, 2023(1):23-27.
|
[18] |
张吉昂, 王萍, 程泽. 基于ICA和Box-Cox变换的锂离子电池SOH估计方法[J]. 电力系统及其自动化学报, 2022, 34(2):9-15.
|
|
ZHANG Ji'ang, WANG Ping, CHENG Ze. SOH estimation method for Li-ion battery based on ICA and Box-Cox transform[J]. Proceedings of the CSU-EPSA, 2022, 34(2):9-15.
|
[19] |
许自强. 基于内阻观测的锂离子电池SOH估计研究[D]. 天津: 河北工业大学, 2019.
|
|
XU Ziqiang. SOH estimation of lithium-ion battery based on resistance observation[D]. Tianjin: Hebei University of Technology, 2019.
|
[20] |
FENG Y F, SHEN J N, MA Z F, et al. Equivalent circuit modeling of sodium-ion batteries[J]. Journal of Energy Storage, 2021, 43:103233.
|
[21] |
WEI M, BALAYA P, YE M, et al. Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis[J]. Energy, 2022, 261:125151.
|
[22] |
曹广华, 赵中林, 许昀昊. 基于GRU的锂电池组健康状态预测研究[J]. 吉林大学学报(信息科学版), 2022, 40(2):181-187.
|
|
CAO Guanghua, ZHAO Zhonglin, XU Yunhao. Research on health state prediction of lithium battery pack based on GRU[J]. Journal of Jilin University (Information Science Edition), 2022, 40(2):181-187.
|
[23] |
刘伟霞, 田勋, 肖家勇, 等. 基于混合模型及LSTM的锂电池SOH与剩余寿命预测[J]. 储能科学与技术, 2021, 10(2):689-694.
doi: 10.19799/j.cnki.2095-4239.2020.0382
|
|
LIU Weixia, TIAN Xun, XIAO Jiayong, et al. Estimation of SOH and remaining life of lithium batteries based on a combination model and long short-term memory[J]. Energy Storage Science and Technology, 2021, 10(2):689-694.
doi: 10.19799/j.cnki.2095-4239.2020.0382
|
[24] |
王凡, 史永胜, 刘博亲, 等. 基于注意力改进BiGRU的锂离子电池健康状态估计[J]. 储能科学与技术, 2021, 10(6):2326-2333.
doi: 10.19799/j.cnki.2095-4239.2021.0099
|
|
WANG Fan, SHI Yongsheng, LIU Boqin, et al. Health state estimation of lithium-ion batteries based on attention augmented BiGRU[J]. Energy Storage Science and Technology, 2021, 10(6):2326-2333.
doi: 10.19799/j.cnki.2095-4239.2021.0099
|
[25] |
李家晨, 朱成杰. 基于BiLSTM神经网络的锂电池SOH快速估计研究[J]. 无线互联科技, 2022, 19(20):146-148.
|
|
LI Jiachen, ZHU Chengjie. Research on rapid SOH estimation of lithium battery based on BiLSTM neural network[J]. Wireless Interconnection Technology, 2022, 19(20):146-148.
|