[1] |
徐智帆. 超级电容在微电网中的应用及健康状态分析综述[J]. 电气开关, 2022, 60(6):1-5,97.
|
|
XU Zhifan. A review of the application and state of health for supercapacitor in microgrid[J]. Electric Switchgear, 2022, 60(6): 1-5,97.
|
[2] |
LIN Q B, LI H S, CHAI Q Q, et al. Simultaneous and rapid estimation of state of health and state of charge for lithium-ion battery based on response characteristics of load surges[J]. Journal of Energy Storage, 2022, 55: 105495.
|
[3] |
LENG F, TAN C M, YAZAMI R, et al. A practical framework of electrical based online state-of-charge estimation of lithium ion batteries[J]. Journal of Power Sources, 2014, 255: 423-430.
|
[4] |
XIONG R, CAO J Y, YU Q Q, et al. Critical review on the battery state of charge estimation methods for electric vehicles[J]. IEEE Access, 2017, 6: 1832-1843.
|
[5] |
ZHANG L, HU X S, WANG Z P, et al. Fractional-order modeling and state-of-charge estimation for ultracapacitors[J]. Journal of Power Sources, 2016, 314: 28-34.
|
[6] |
KUNG C C, LIU S H. The state of charge estimation of lithium-ion battery based on temperature-compensated method with adaptive extended Kalman filter[C]// 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2018: 4144-4149.
|
[7] |
LU L G, HAN X B, LI J Q, et al. A review on the key issues for lithium-ion battery management in electric vehicles[J]. Journal of power sources, 2013, 226: 272-288.
|
[8] |
李超然, 肖飞, 樊亚翔. 基于循环神经网络的锂电池SOC估算方法[J]. 海军工程大学学报, 2019, 31(6):107-112.
|
|
LI Chaoran, XIAO Fei, FAN Yaxiang. Approach to lithium battery SOC estimation based on recurrent neural network[J]. Journal of Naval University of Engineering, 2019, 31(6): 107-112.
|
[9] |
LAI X, ZHENG Y J, SUN T. A comparative study of different equivalent circuit models for estimating state-of-charge of lithium-ion batteries[J]. Electrochimica Acta, 2018, 259: 566-577.
|
[10] |
ZHANG Z Y, JIANG L, ZHANG L Z, et al. State-of-charge estimation of lithium-ion battery pack by using an adaptive extended Kalman filter for electric vehicles[J]. Journal of Energy Storage, 2021, 37: 102457.
|
[11] |
WANG Y J, CHEN Z H. A framework for state-of-charge and remaining discharge time prediction using unscented particle filter[J]. Applied Energy, 2020, 260: 114324.
|
[12] |
BURGOS C, SAEZ D, ORCHARD M E, et al. Fuzzy modelling for the state-of-charge estimation of lead-acid batteries[J]. Journal of Power Sources, 2015, 274:355-366.
|
[13] |
CHAOUI H, IBE-EKEOCHA C C. State of charge and state of health estimation for lithium batteries using recurrent neural networks[J]. IEEE Transactions on vehicular technology, 2017, 66(10): 8773-8783.
|
[14] |
LI C R, XIAO F, FAN Y X. An approach to state of charge estimation of lithium-ion batteries based on recurrent neural networks with gated recurrent unit[J]. Energies, 2019, 12(9):1592.
|
[15] |
LIN Q, CHEN S, LIN C M. An optimization method for the initial parameters selection of fuzzy cerebellar model neural networks in parametric fault diagnosis[J]. International Journal of Fuzzy Systems, 2020, 22(7): 2071-2082.
|
[16] |
LIN C M, HOU Y L, CHEN T Y, et al. Breast nodules computer-aided diagnostic system design using fuzzy cerebellar model neural networks[J]. IEEE Transactions on Fuzzy Systems, 2014, 22(3): 693-699.
|
[17] |
GUAN J S, HONG S J, KANG S B, et al. Robust adaptive recurrent cerebellar model neural network for non-linear system based on GPSO[J]. Frontiers in Neuroscience, 2019, 13: 390.
|
[18] |
HUYNH T T, LE T L, LIN C M. A TOPSIS multicriteria decision method-based intelligent recurrent wavelet CMAC control system design for MIMO uncertain nonlinear systems[J]. Neural Computing and Applications, 2020, 32: 4025-4043.
|
[19] |
ZHAO J, LIN C M. Wavelet-TSK-Type fuzzy cerebellar model neural network for uncertain nonlinear systems[J]. IEEE Transactions on Fuzzy Systems, 2019, 27(3):549-558.
|
[20] |
LIN Q B, XU Z F, LIN C M. State of health estimation and remaining useful life prediction for lithium-ion batteries using FBELNN and RCMNN[J]. Journal of Intelligent and Fuzzy System, 2021, 40(6): 10919-10933.
|
[21] |
XU W, XU J L, LANG J F, et al. A multi-timescale estimator for lithium-ion battery state of charge and state of energy estimation using dual H infinity filter[J]. 2019, IEEE Access, 7: 181229-181241.
|
[22] |
TIAN Y, LAI R C, LI X Y, et al. A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter[J]. Applied Energy, 2020, 265: 114789.
|