[1] |
马义松, 武志刚. 基于Neo4j的电力大数据建模及分析[J]. 电工电能新技术, 2016, 35(2):24-30.
|
|
MA Yisong, WU Zhigang. Modeling and analysis of electric power big data utilizing Neo4j[J]. Advanced Technology of Electrical Engineering and Energy, 2016, 35(2):24-30.
|
[2] |
张兴. 风电运营大数据关键技术[J]. 电子技术与软件工程, 2019(10):154-156.
|
|
ZHANG Xin. Critical technologies for big data analytics in wind energy operations[J]. Electronic Technology & Software Engineering, 2019(10):154-156.
|
[3] |
刘瑞宏, 谢国强, 苑宗港, 等. 基于知识图谱的智能故障诊断研究[J]. 邮电设计技术, 2020(10):30-35.
|
|
LIU Ruihong, XIE Guoqiang, YUAN Zonggang, et al. Research on intelligent fault diagnosis based on knowledge graph[J]. Designing Techniques of Posts and Telecommunications, 2020(10):30-35.
|
[4] |
吕梦平. 基于知识图谱技术的风电数据管理与应用研究[D]. 湘潭: 湘潭大学, 2021.
|
|
LYU Mengping. Research on management and application of wind power data based on knowledge graph technology[D]. Xiangtan: Xiangtan University, 2021.
|
[5] |
吕梦平, 段斌, 蒋海辉, 等. 基于知识图谱技术的风电数据管理与应用研究[J]. 电力系统保护与控制, 2021, 49(6):167-173.
|
|
LYU Mengping, DUAN Bin, JIANG Haihui, et al. Research on management and application of wind power data based on knowledge graph technology[J]. Power System Protection and Control, 2021, 49(6):167-173.
|
[6] |
刘梓权, 王慧芳. 基于知识图谱技术的电力设备缺陷记录检索方法[J]. 电力系统自动化, 2018, 42(14): 158-164.
|
|
LIU Ziquan, WANG Huifang. Retrieval Method for defect records of power equipment based on knowledge graph technology[J]. Automation of Electric Power Systems, 2018, 42(14):158-164.
|
[7] |
CHATTERJEE J, DETHLEFS N. Automated question-answering for interactive decision support in operations & maintenance of wind turbines[J]. IEEE Access, 2022, 10:84710-84737.
|
[8] |
萨日娜, 李艳玲, 林民. 知识图谱推理问答研究综述[J]. 计算机科学与探索, 2022, 16(8):1727-1741.
doi: 10.3778/j.issn.1673-9418.2111033
|
|
SA Rina, LI Yanling, LIN Min. Survey of question answering based on knowledge graph reasoning[J]. Journal of Frontiers of Computer Science & Technology, 2022, 16(8):1727-1741.
|
[9] |
CHOWDHERY A, NARANG S, DEVLIN J, et al. PaLM: Scaling language modeling with pathways[J]. arXiv preprint arXiv, 2022:2204.02311.
|
[10] |
GUU K, LEE K, TUNG Z, et al. REALM: Retrieval-augmented language model pre-training[J]. International Conference on Machine Learning, 2020, 119:3929-3938.
|
[11] |
BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]// Conference and Workshop on Neural Information Processing Systems. NIPS, 2020, 33:1877-1901.
|
[12] |
MAYNEZ J, NARAYAN S, BOHNET B, et al. On faithfulness and factuality in abstractive summarization[C]// Annual Meeting of the Association for Computational Linguistics. ACL, 2020:1906-1919.
|
[13] |
赵俊华, 文福拴, 黄建伟, 等. 基于大语言模型的电力系统通用人工智能展望:理论与应用[J]. 电力系统自动化, 2024, 48(6):13-28.
|
|
ZHAO Junhua, WEN Fushuan, HUANG Jianwei, et al. Prospect of artificial general intelligence for power systems based on large language model: Theory and applications[J]. Automation of Electric Power Systems, 2024, 48(6):13-28.
|
[14] |
董俊, 束洪春, 刘瑞, 等. 大语言模型赋能场景生成和双层优化的多农业园区供电-灌溉-蓄水耦合运行[J]. 高电压技术, 2024, 50(7):2906-2917.
|
|
DONG Jun, SHU Hongchun, LIU Rui, et al. Large language models empowering scenario generation and dual-layer optimization for coupled operations of power supply, irrigation, and water storage in multiple agricultural parks[J]. High Voltage Engineering, 2024, 50(7):2906-2917.
|
[15] |
陈艳波, 方哲, 张宁, 等. 基于大语言模型绿电预测和绿电交易的园区综合能源系统集群多目标协同运行方法[J]. 高电压技术, 2024, 50(7):2849-2863.
|
|
CHEN Yanbo, FANG Zhe, ZHANG Ning, et al. Multi-objective collaborative operation method for park-level integrated energy system cluster based on large language model for green electricity prediction and trading[J]. High Voltage Engineering, 2024, 50(7):2849-2863.
|
[16] |
胡志强, 潘鑫瑜, 文思捷, 等. 结合多模态知识图谱与大语言模型的风机装配工艺问答系统[J]. 机械设计, 2023, 40(S2):20-26.
|
|
HU Zhiqiang, PAN Xinyu, WEN Sijie, et al. Assembly process question answering system of wind turbines combining multi-modal knowledge graphs with LLMs[J]. Journal of Machine Design, 2023, 40(S2):20-26.
|
[17] |
DOUZE M, GUZHVA A, DENG C Q, et al. The Faiss library[J]. arXiv preprint arXiv, 2024:2401.08281.
|
[18] |
DU Z X, QIAN Y J, LIU X, et al. GLM: General language model pretraining with autoregressive blank infilling[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. ACL, 2022.
|
[19] |
马艺洁, 赖海光, 刘子威, 等. 实体识别技术研究进展综述[J]. 太赫兹科学与电子信息学报, 2024, 22(5):503-515.
|
|
MA Yijie, LAI Haiguang, LIU Ziwei, et al. Journal of terahertz science and electronic information technology[J]. Journal of Terahertz Science and Electronic Information Technology, 2024, 22(5):503-515.
|
[20] |
RONG X. Word2vec parameter learning explained[J]. Computing Research Repository, 2014:1411.2738.
|
[21] |
MARTIN G. Word2vec, node2vec, graph2vec, X2vec: Towards a theory of vector embeddings of structured data[C]// Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. ACM SIGACT-SIGMOD-SIGART, 2020:1-16.
|
[22] |
YESIR S, SOGUKPINAR I. Malware detection and classification using fastText and BERT[C]// 2021 9th International Symposium on Digital Forensics and Security.ISDFS, 2021: 1-6.
|
[23] |
QIU Y F, LI H Y, QU Y Q, et al. DuReader_retrieval: A large-scale Chinese benchmark for passage retrieval from web search engine[C]// Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing. EMNLP, 2022:5326-5338.
|