综合智慧能源 ›› 2024, Vol. 46 ›› Issue (9): 69-85.doi: 10.3969/j.issn.2097-0706.2024.09.009

• 新能源与人工智能 • 上一篇    下一篇

基于遗传算法的建筑用能多目标优化应用进展

樊颜搏(), 熊亚选(), 李想, 田曦, 杨洋   

  1. 北京建筑大学 供热、供燃气、通风及空调工程北京市重点实验室,北京 100044
  • 收稿日期:2024-05-09 修回日期:2024-07-25 出版日期:2024-09-25
  • 作者简介:樊颜搏(1994),男,硕士生,从事建筑多目标优化方面的研究,492405904@qq.com
    熊亚选(1977),男,教授,博士,从事固废储热和低碳建筑方面的研究,xiongyaxuan@bucea.edu.cn
  • 基金资助:
    北京市科技计划项目(KM20191001601)

Advancement in multi-objective optimization for building energy use based on genetic algorithms

FAN Yanbo(), XIONG Yaxuan(), LI Xiang, TIAN Xi, YANG Yang   

  1. Beijing Key Laboratory of Heating, Gas Supply,Ventilation and Air Conditioning Engineering,Beijing University of Civil Engineering and Architecture, Beijing 100044,China
  • Received:2024-05-09 Revised:2024-07-25 Published:2024-09-25
  • Supported by:
    Beijing Science and Technology Project(KM20191001601)

摘要:

目前,中国建筑用能结构中的化石能源消费占比较高,不利于“双碳”目标的实现。论述了绿色建筑能源系统的现状,展示了可再生能源整合、余热回收利用以及储能等技术在提升建筑能效和减少碳排放方面的潜力。研究人员多以建筑能耗、室内舒适度及建筑成本为优化目标,通过建模软件搭建物理模型,选择适合多目标优化的算法对模型进行优化。探讨了现有技术以及算法在建筑用能多目标优化中的优缺点,指出遗传算法能够在建筑能耗、室内舒适度以及建筑成本等多方面取得良好的优化效果,为建筑设计和改造决策提供了强有力的支持。未来需要发展新的多目标优化算法,建立全面的智慧能源管理大数据平台,从而扩大全场景应用,实现建筑能源使用和智慧化管理的完美融合。

关键词: “双碳”目标, 绿色建筑, 建筑能耗, 可再生能源, 余热回收, 碳排放, 储能, 多目标优化, 遗传算法, 综合能源

Abstract:

Currently, fossil energy consumption accounts for a high proportion of energy use in buildings in China, which is not conducive to achieving the "dual-carbon" goals. This paper discusses the current status of green building energy systems and highlights the potential of technologies such as renewable energy integration, waste heat recovery, and energy storage in improving building energy efficiency and reducing carbon emissions. Researchers often focus on optimizing building energy consumption, indoor comfort, and construction costs by building physical models using simulation software and selecting appropriate algorithms for multi-objective optimization. The paper explores the advantages and disadvantages of existing technologies and algorithms in multi-objective optimization of building energy use, emphasizing that genetic algorithms can achieve good optimization results in terms of building energy consumption, indoor comfort, and construction costs, thus providing strong support for building design and renovation decisions. In the future, there is a need to develop new multi-objective optimization algorithms and establish a comprehensive big data platform for intelligent energy management to expand all-scenario applications and achieve the perfect integration of building energy use and intelligent management.

Key words: "dual-carbon" goals, green buildings, building energy consumption, renewable energy, waste heat recovery, carbon emissions, energy storage, multi-objective optimization, genetic algorithm, integrated energy

中图分类号: