综合智慧能源 ›› 2024, Vol. 46 ›› Issue (9): 20-27.doi: 10.3969/j.issn.2097-0706.2024.09.003
景玉博1(), 邹璐垚2, 蒋佳月2, 沙文慧3, 陈江涛4,*(
)
收稿日期:
2024-04-16
修回日期:
2024-08-07
出版日期:
2024-09-25
通讯作者:
*陈江涛(1987),男,副教授,从事清洁燃烧和余热利用方面的研究,chenjt-1@163.com。作者简介:
景玉博(1986),男,工程师,从事新能源发电和储能技术利用方面的研究,594016521@qq.com。
基金资助:
JING Yubo1(), ZOU Luyao2, JIANG Jiayue2, SHA Wenhui3, CHEN Jiangtao4,*(
)
Received:
2024-04-16
Revised:
2024-08-07
Published:
2024-09-25
Supported by:
摘要:
燃煤机组的低碳化改造是中短期降低碳排放需求的有效手段之一,尤其是储能技术辅助调节将进一步提升碳捕集系统的应用潜力。为系统归纳碳捕集机组与储能技术的应用现状,结合碳捕集技术特征,重点评述各储能的应用特点。研究认为,储热、蓄电以及飞轮储能等储能技术与碳捕集燃煤机组耦合应用具有一定的适用性,主要表现在性能提升、经济运行以及污染物控制等方面。同时,进一步对储能技术在碳捕集燃煤机组的运用前景进行了展望。研究认为参数间的匹配性是碳捕集燃煤机组耦合储能技术的关键因素,在深入挖掘系统调控潜力的基础上有必要进行储能充放策略协同优化,该技术的发展将重点聚焦于耦合多种储能系统以及满足碳捕集燃煤机组调峰调频需求,期望对现有燃煤机组低碳化改造提供参考。
中图分类号:
景玉博, 邹璐垚, 蒋佳月, 沙文慧, 陈江涛. 碳捕集燃煤机组耦合储能技术的研究进展[J]. 综合智慧能源, 2024, 46(9): 20-27.
JING Yubo, ZOU Luyao, JIANG Jiayue, SHA Wenhui, CHEN Jiangtao. Research progress on the coupling of energy storage technology with carbon capture in coal-fired units[J]. Integrated Intelligent Energy, 2024, 46(9): 20-27.
[1] | 张昆, 孙悦, 王池嘉, 等. 碳捕集、利用与封存中CO2腐蚀与防护研究[J]. 表面技术, 2022, 51(9):43-52. |
ZHANG Kun, SUN Yue, WANG Chijia, et al. Research on CO2 corrosion and protection in carbon capture,utilization and storage[J]. Surface Technology, 2022, 51(9):43-52. | |
[2] | 岑彬. “双碳”背景下可再生能源发展中“弃风弃光”的问题及消纳措施[J]. 中阿科技论坛(中英文), 2022(10): 60-63. |
CEN Bin. Study on the "forced abandonment of wind and light" in the development of renewable energy under the background of "dual carbon" and its mitigation measures[J]. China-Arab States Science and Technology Forum, 2022(10):60-63. | |
[3] | 徐宪龙, 张艺凡, 孙浩程, 等. 飞轮储能技术及其耦合发电机组研究进展[J]. 南方能源建设, 2022, 9(3):119-126. |
XU Xianlong, ZHANG Yifan, SUN Haocheng, et al. Research progress of flywheel energy storage technology and its coupling power generation[J]. Southern Energy Construction, 2022, 9(3):119-126. | |
[4] |
王辉, 李峻, 祝培旺, 等. 应用于火电机组深度调峰的百兆瓦级熔盐储能技术[J]. 储能科学与技术, 2021, 10(5): 1760-1767.
doi: 10.19799/j.cnki.2095-4239.2021.0230 |
WANG Hui, LI Jun, ZHU Peiwang, et al. Hundred-megawatt molten salt heat storage system for deep peak shaving of thermal power plant[J]. Energy Storage Science and Technology, 2021, 10(5):1760-1767.
doi: 10.19799/j.cnki.2095-4239.2021.0230 |
|
[5] | 崔杨, 陈志, 严干贵, 等. 基于含储热热电联产机组与电锅炉的弃风消纳协调调度模型[J]. 中国电机工程学报, 2016, 36(15):4072-4081. |
CUI Yang, CHEN Zhi, YAN Gangui, et al. Coordinated wind power accommodating dispatch model based on electric boiler and CHP with thermal energy storage[J]. Proceedings of the CSEE, 2016, 36(15):4072-4081. | |
[6] |
张显荣, 徐玉杰, 杨立军, 等. 多类型火电-储热耦合系统性能分析与比较[J]. 储能科学与技术, 2021, 10(5): 1565-1578.
doi: 10.19799/j.cnki.2095-4239.2021.0347 |
ZHANG Xianrong, XU Yujie, YANG Lijun, et al. Performance analysis and comparison of multi-type thermal power-heat storage coupling systems[J]. Energy Storage Science and Technology, 2021, 10(5):1565-1578.
doi: 10.19799/j.cnki.2095-4239.2021.0347 |
|
[7] | YAN S Y, ZHANG Y F, YIN W Q, et al. Flexibility enhancement of renewable-penetrated power systems coordinating energy storage deployment and deep peak regulation of thermal generators[J]. Electric Power Systems Research, 2024: 231. |
[8] | YAN L Q, SHUI T, XUE T L, et al. Comprehensive control strategy considering hybrid energy storage for primary frequency modulation[J]. Energies, 2022, 15(11):4079-4079. |
[9] | 王金星, 袁军. 燃煤机组智慧供热与灵活调峰[M]. 北京: 中国电力出版社, 2023. |
[10] | 吴振涛, 庞小兵, 韩张亮, 等. 二氧化碳捕集、利用与储存技术进展及趋势[J]. 三峡生态环境监测, 2022, 7(4): 12-22. |
WU Zhentao, PANG Xiaobing, HAN Zhangliang, et al. Progress and trends of carbon capture utilization and storage technology[J]. Ecology and Environmental Monitoring of Three Gorges, 2022, 7(4):12-22. | |
[11] | 刘志刚. CO2捕集技术的研究现状与发展趋势[J]. 石油与天然气化工, 2022, 51(4):24-32. |
LIU Zhigang. Research status and development trend of CO2 capture technology[J]. Chemical Engineering of Oil & Gas, 2022, 51(4):24-32. | |
[12] | 王金星, 俞卫新. 碳捕集系统与燃煤调峰机组耦合技术[M]. 北京: 中国电力出版社, 2024. |
[13] | 闵剑, 加璐. 我国碳捕集与封存技术应用前景分析[J]. 石油石化节能与减排, 2011(2):21-27. |
MIN Jian, JIA Lu. Application prospect of ccs in China[J]. Energy Conservation and Emission Reduction in Petroleum and Petrochemical Industry, 2011(2):21-27. | |
[14] | 胡东子. 压缩二氧化碳储能与碳捕集燃煤机组的耦合系统性能研究[D]. 北京: 华北电力大学, 2023. |
HU Dongzi. Study on performance of coupling system of compressed carbon dioxide energy storage and carbon capture coal-fired unit[D]. Beijing: North China Electric Power University, 2023. | |
[15] | 崔杨, 安宁, 付小标, 等. 考虑广义储能与碳捕集设备联合调峰的电力系统低碳经济调度[J]. 电力自动化设备, 2023, 43(8):40-48. |
CUI Yang, AN Ning, FU Xiaobiao, et al. Low-carbon economic dispatching of power system considering joint peak shaving of generalized energy storage and carbon capture equipment[J]. Electric Power Automation Equipment, 2023, 43(8):40-48. | |
[16] | 毛翠骥, 余雄江, 徐进良, 等. 耦合熔融盐储热的火电机组灵活调峰系统关键技术研究进展[J]. 热力发电, 2023, 52(2):10-22. |
MAO Cuiji, YU Xiongjiang, XU Jinliang, et al. Research progress on key technologies of flexible peak shaving system of thermal power unit coupled with molten salt heat storage[J]. Thermal Power Generation, 2023, 52(2): 10-22. | |
[17] | 邢峰, 尹利, 郑利宁, 等. 含高比例新能源及高载能用户的区域电网日前调度方法分析[J]. 内蒙古电力技术, 2022, 40(4):41-46. |
XING Feng, YIN Li, ZHENG Lining, et al. Analysis of day-ahead dispatching method of regional power grid with high proportion of new energy and high load consumers[J]. Inner Mongolia Electric Power, 2022, 40(4):41-46. | |
[18] | 李玲, 刘鑫屏. 新能源大规模并网条件下火电机组深度调峰控制策略优化[J]. 中国电力, 2020, 53(1):155-161. |
LI Ling, LIU Xinping. Control strategy optimization for thermal power unit adapted to deep peak shaving for large-scale new energy source integration[J]. Electric Power, 2020, 53(1):155-161. | |
[19] | 王伟, 徐婧, 赵翔, 等. 中国煤电机组调峰运行现状分析[J]. 南方能源建设, 2017, 4(1):18-24. |
WANG Wei, XU Jing, ZHAO Xiang, et al. Analysis on peak load regulation status quo for coal-fired power plants in China[J]. Southern Energy Construction, 2017, 4(1): 18-24. | |
[20] | 马汀山, 王妍, 吕凯, 等. “双碳”目标下火电机组耦合储能的灵活性改造技术研究进展[J]. 中国电机工程学报, 2022, 42(S1):136-148. |
MA Tingshan, WANG Yan, LYU Kai, et al. Research progress on flexible transformation technology of thermal power unit coupled energy storage under the goal of "double carbon"[J]. Proceedings of the CSEE, 2022, 42(S1):136-148. | |
[21] |
张钟平, 刘亨, 谢玉荣, 等. 熔盐储热技术的应用现状与研究进展[J]. 综合智慧能源, 2023, 45(9):40-47.
doi: 10.3969/j.issn.2097-0706.2023.09.006 |
ZHANG Zhongping, LIU Heng, XIE Yurong, et al. Application and research progress of molten salt heat storage technology[J]. Integrated Intelligent Energy, 2023, 45(9):40-47.
doi: 10.3969/j.issn.2097-0706.2023.09.006 |
|
[22] |
李琦, 王放放, 杨鹏威, 等. 火电厂灵活性改造背景下储能技术应用现状与发展[J]. 综合智慧能源, 2023, 45(3):66-73.
doi: 10.3969/j.issn.2097-0706.2023.03.009 |
LI Qi, WANG Fangfang, YANG Pengwei, et al. Application status and development of energy storage technology in the context of flexibility transformation of thermal power plants[J]. Integrated Intelligent Energy, 2023, 45(3):66-73.
doi: 10.3969/j.issn.2097-0706.2023.03.009 |
|
[23] | 肖春梅. 电储能提升火电机组调频性能研究[J]. 热力发电, 2021, 50(6):98-105. |
XIAO Chunmei. Research on using electric energy storage to improve frequency regulation performance of thermal power units[J]. Thermal Power Generation, 2021, 50(6):98-105. | |
[24] |
孙娜, 董海鹰, 陈薇, 等. 新型电力系统场景下网侧规模化储能二次调频控制策略[J]. 综合智慧能源, 2024, 46(2):59-67.
doi: 10.3969/j.issn.2097-0706.2024.02.008 |
SUN Na, DONG Haiying, CHEN Wei, et al. Secondary frequency modulation control strategy for large-scale grid-side energy storage devices in new power systems[J]. Integrated Intelligent Energy, 2024, 46(2):59-67.
doi: 10.3969/j.issn.2097-0706.2024.02.008 |
|
[25] | 唐西胜, 齐智平. 独立光伏系统中超级电容器蓄电池有源混合储能方案的研究[J]. 电工电能新技术, 2006, 25(3):37-41,67. |
TANG Xisheng, QI Zhiping. Study on an actively controlled battery/ultracapacitor hybrid in stand-alone PV system[J]. Advanced Technology of Electrical Engineering and Energy, 2006, 25(3):37-41,67. | |
[26] | 隋云任. 飞轮储能辅助600 MW燃煤机组调频技术研究[D]. 北京: 华北电力大学, 2020. |
SUI Yunren. Study on frequency modulation technology of flywheel energy storage assisted 600MW coal-fired units[D]. Beijing: North China Electric Power University, 2020. | |
[27] | 童家麟, 洪庆, 吕洪坤, 等. 电源侧储能技术发展现状及应用前景综述[J]. 华电技术, 2021, 43(7):17-23. |
TONG Jialin, HONG Qing, LYU Hongkun, et al. Development status and application prospect of power side energy storage technology[J]. Huadian Technology, 2021, 43(7):17-23. | |
[28] | 梁志宏, 刘吉臻, 洪烽, 等. 电力级大功率飞轮储能系统耦合火电机组调频技术研究及工程应用[J]. 中国电机工程学报,2024:1-14. |
LIANG Zhihong, LIU Jizhen, HONG Feng, et al. Research and engineering application of frequency modulation technology of power-level high-power flywheel energy storage system coupled with thermal power unit[J]. Proceedings of the CSEE, 2024,1-14. | |
[29] | 赵坤. 火电企业的绿色实践:国能灵武公司探索建设国内首个“飞轮储能+火电联合调频”工程[N]. 中国电力报,2022-03-25(5). |
[30] | 高春辉, 肖冰, 尹宏学, 等. 新能源背景下储能参与火电调峰及配置方式综述[J]. 热力发电, 2019, 48(10):38-43. |
GAO Chunhui, XIAO Bing, YIN Hongxue, et al. Energy storage participating in thermal power peaking and configuration in background of new energy:A review[J]. Thermal Power Generation, 2019, 48(10):38-43. | |
[31] | 李本瀚, 梁璐, 洪烽, 等. 基于飞轮储能的火电机组一次调频研究[J]. 电工技术, 2022(9):15-18. |
LI Benhan, LIANG Lu, HONG Feng, et al. Research on primary frequency modulation of thermal power unit based on flywheel energy storage[J]. Electric Engineering, 2022(9):15-18. | |
[32] | 史瑞静, 王维庆, 樊小朝, 等. 高比例风电电力系统储能运行及配置分析[J]. 水力发电, 2024, 50(7):79-85,92. |
SHI Ruijing, WANG Weiqing, FAN Xiaochao, et al. Analysis of energy storage operation and configuration in high proportion wind power systems[J]. Water Power, 2024, 50(7):79-85, 92. | |
[33] | 朱兴仪. 考虑二氧化碳捕集的综合能源系统性能分析与优化[D]. 厦门: 厦门大学, 2020. |
ZHU Xingyi. Performance analysis and optimization of comprehensive energy system considering carbon dioxide capture[D]. Xiamen: Xiamen University, 2020. | |
[34] | RINNES S, SYRI S. The possibilities of combined heat and power production balancing large amounts of wind power in Finland[J]. Energy, 2015, 82:1034-1046. |
[35] |
孙月巧, 郑宏飞, 孔慧. 碳中和背景下煤电转型关键技术研究与展望[J]. 动力工程学报, 2022, 42(11):1013-1023.
doi: 10.19805/j.cnki.jcspe.2022.11.003 |
SUN Yueqiao, ZHENG Hongfei, KONG Hui. Key technologies and prospects of coal power transformation under carbon neutrality background[J]. Journal of Chinese Society of Power Engineering, 2022, 42(11):1013-1023.
doi: 10.19805/j.cnki.jcspe.2022.11.003 |
|
[36] | 蔡春霞, 贾晓丹, 鲍国臣, 等. 典型燃煤电厂大气污染物沉降对周边水源地的影响及贡献研究[J]. 西北地质, 2024, 57(1):64-72. |
CAI Chunxia, JIA Xiaodan, BAO Guochen, et al. Impact and contribution of atmospheric pollutant deposition from a typical power plant on surrounding water sources[J]. Northwestern Geology, 2024, 57(1):64-72. | |
[37] | 庞力平, 张世刚, 段立强. 高温熔盐储能提高二次再热机组灵活性研究[J]. 中国电机工程学报, 2021, 41(8):2682-2691. |
PANG Liping, ZHANG Shigang, DUAN Liqiang. Flexibility improvement study on the double reheat power generation unit with a high temperature molten salt thermal energy storage[J]. Proceedings of the CSEE, 2021, 41(8):2682-2691. | |
[38] | 郑琼, 江丽霞, 徐玉杰, 等. 碳达峰、碳中和背景下储能技术研究进展与发展建议[J]. 中国科学院院刊, 2022, 37(4):529-540. |
ZHENG Qiong, JIANG Lixia, XU Yujie, et al. Research progress and development suggestions of energy storage technology under background of carbon peak and carbon neutrality[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(4):529-540. | |
[39] |
张磊, 郭语, 石嘉豪, 等. 风火储一体化电站功率特性研究[J]. 动力工程学报, 2022, 42(6):568-574, 581.
doi: 10.19805/j.cnki.jcspe.2022.06.011 |
ZHANG Lei, GUO Yu, SHI Jiahao, et al. Study on power characteristics of wind-coal-battery coupling integrated power station[J]. Journal of Chinese Society of Power Engineering, 2022, 42(6):568-574, 581.
doi: 10.19805/j.cnki.jcspe.2022.06.011 |
|
[40] |
薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9):48-58.
doi: 10.3969/j.issn.2097-0706.2023.09.007 |
XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development[J]. Integrated Intelligent Energy, 2023, 45(9):48-58.
doi: 10.3969/j.issn.2097-0706.2023.09.007 |
[1] | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
[2] | 李朋真, 贾冰珂, 刘艳红, 吴振龙. 燃烧后二氧化碳捕集系统的改进自抗扰控制[J]. 综合智慧能源, 2023, 45(8): 18-25. |
[3] | 李菁, 窦真兰, 王加祥, 张春雁, 鲁涛, 倪耀兵. 基于RSOC的风光氢能源系统功率分配策略研究[J]. 综合智慧能源, 2023, 45(7): 78-86. |
[4] | 冯丽, 刘波, 韩震宇, 张萌雨. 市场化发电容量补偿机制探索与试点[J]. 综合智慧能源, 2023, 45(6): 81-86. |
[5] | 李琦, 王放放, 杨鹏威, 赵光金, 刘晓娜, 马双忱. 火电厂灵活性改造背景下储能技术应用现状与发展[J]. 综合智慧能源, 2023, 45(3): 66-73. |
[6] | 赵鑫, 钱本华, 王睿, 柳虎, 翟硕, 赵梓亦. 电化学储能参与电网安全稳定控制的研究综述[J]. 综合智慧能源, 2023, 45(1): 58-66. |
[7] | 谢典, 高亚静, 芦新波, 刘天阳, 赵良, 赵勇. 能耗“双控”向碳排放“双控”转变的实施路径研究[J]. 综合智慧能源, 2022, 44(7): 73-80. |
[8] | 胡长征, 王雅博, 刘圣春. MEA溶液在生物质电厂和燃煤电厂捕集CO2中的应用对比[J]. 综合智慧能源, 2022, 44(6): 78-85. |
[9] | 童家麟, 吴瑞康, 茅建波, 吕洪坤. 燃煤机组深度调峰瓶颈改善及耦合调峰技术研究[J]. 综合智慧能源, 2022, 44(4): 43-50. |
[10] | 蒋文坤, 韩颖慧, 薛智文, 朱勇奇, 徐艳梅. 多能互补能源系统中储能原理及其应用[J]. 综合智慧能源, 2022, 44(1): 63-71. |
[11] | 郭璞维, 彭跃, 邓靖敏, 李兵发, 周兴, 胡鋆, 郭海强, 王金星. 烟气余热回收与储能技术耦合应用的可行性研究[J]. 华电技术, 2021, 43(9): 62-68. |
[12] | 赵永亮, 刘明, 王朝阳, 孙瑞强, 种道彤, 严俊杰. 基于固体填料床的泵热储能系统热-经济性分析[J]. 华电技术, 2021, 43(7): 1-8. |
[13] | 喻小宝, 郑丹丹, 杨康, 孔杰, 章天浩. “双碳”目标下能源电力行业的机遇与挑战[J]. 华电技术, 2021, 43(6): 21-32. |
[14] | 赵睿恺, 赵力, 赵军. 面向碳中和目标的变温吸附碳捕集效能与技术经济性分析[J]. 华电技术, 2021, 43(6): 41-46. |
[15] | 钱煜, 颜爱晶, 邢晨健, 王瑞林. 槽式太阳能聚光集热-燃煤发电碳捕集系统研究[J]. 华电技术, 2021, 43(6): 61-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||