综合智慧能源 ›› 2022, Vol. 44 ›› Issue (6): 78-85.doi: 10.3969/j.issn.2097-0706.2022.06.009
收稿日期:
2022-03-24
修回日期:
2022-04-25
出版日期:
2022-06-25
通讯作者:
*刘圣春(1976),男,教授,博士,从事自然工质替代、制冷系统优化及节能、能源系统综合利用等方面的研究, liushch@tjcu.edu.cn。作者简介:
胡长征(1996),男,在读硕士研究生,从事碳捕集系统动态仿真及控制优化等方面的研究, tjcu_hcz@163.com;基金资助:
HU Changzheng(), WANG Yabo(
), LIU Shengchun*(
)
Received:
2022-03-24
Revised:
2022-04-25
Published:
2022-06-25
摘要:
为实现全球温升1.5 ℃以下的气候目标,需要减少化石燃料的使用和温室气体排放,带有碳捕集与封存的生物能源(BECCS)技术已得到广泛关注。对以单乙醇胺(MEA)溶液作为溶剂的化学吸收碳捕集系统进行建模。以采用了3种生物质(木头,草本生物质和固体垃圾)为燃料的生物质电厂和使用了2种燃煤(烟煤和褐煤)为燃料的火电厂为例,分析了从生物质电厂捕集到的烟气组成以及碳捕集系统的CO2捕集率、能耗和经济效益,并将结果与燃煤电厂的碳捕集结果进行对比。结果表明:生物质电厂产生的烟气组成与生物质种类相关,与燃煤电厂的碳捕集情况相比,生物质燃烧烟气中CO2体积分数分布更广;相同溶剂条件下,除草本生物质外,捕集系统对生物质燃烧烟气的碳捕集率为63.73%~92.08%,高于燃煤烟气的59.24%~79.53%;除城市固体垃圾外,从生物质电厂碳捕集系统的再沸器单位能耗和冷凝器单位能耗分别为3.89~4.00 GJ/t和1.57~1.71 GJ/t,低于燃煤电厂所需的3.90~4.29 GJ/t和1.61~1.97 GJ/t;从生物质燃烧烟气捕集CO2造成MEA降解更少;在保证热电厂热量输入的情况下,虽然捕集系统对燃煤电厂经济效益的提升大于生物质电厂,但后者的经济效益更好。
中图分类号:
胡长征, 王雅博, 刘圣春. MEA溶液在生物质电厂和燃煤电厂捕集CO2中的应用对比[J]. 综合智慧能源, 2022, 44(6): 78-85.
HU Changzheng, WANG Yabo, LIU Shengchun. Application of MEA solution in the CO2 capture in biomass power plants and coal-fired power plants[J]. Integrated Intelligent Energy, 2022, 44(6): 78-85.
[1] | 张晋宾, 周四维. 碳中和体系解读[J]. 华电技术, 2021, 43(6): 1-10. |
ZHANG Jinbin, ZHOU Siwei. Interpretation on carbon neutrality system[J]. Huadian Technology, 2021, 43(6): 1-10. | |
[2] |
LUIS P. Use of monoethanolamine(MEA) for CO2 capture in a global scenario: Consequences and alternatives[J]. Desalination, 2016, 380: 93-99.
doi: 10.1016/j.desal.2015.08.004 |
[3] | 赵国涛, 钱国明, 王盛. “双碳”目标下绿色电力低碳发展的路径分析[J]. 华电技术, 2021, 43(6): 11-20. |
ZHAO Guotao, QIAN Guoming, WANG Sheng. Analysis on green and low-carbon development path for power industry to realize carbon peak and carbon neutrality[J]. Huadian Technology, 2021, 43(6): 11-20. | |
[4] | 蔡博峰, 李琦, 张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021)——中国CCUS路径研究[R]. 生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国21世纪议程管理中心, 2021. |
[5] | 何建坤. 碳达峰/碳中和目标导向下能源和经济的低碳转型[J]. 环境经济研究, 2021, 6(1): 1-9. |
HE Jiankun. Low-carbon transition of energy and economy under the goal of carbon neutrality of carbon peak[J]. Journal of Environmental Economics, 2021, 6(1):1-9. | |
[6] |
ABBAS T, ISSA M, ILINCA A. Biomass cogeneration technologies: A review[J]. Journal of Sustainable Bioenergy Systems, 2020, 10(1): 1-15.
doi: 10.4236/jsbs.2020.101001 |
[7] |
FARAJOLLAHI H, HOSSAINPOUR S. Application of organic Rankine cycle in integration of thermal power plant with post-combustion CO2 capture and compression[J]. Energy, 2017, 118: 927-936.
doi: 10.1016/j.energy.2016.10.124 |
[8] |
KHALIFA O, ALKHATIB I I I, BAHAMON D, et al. Modifying absorption process configurations to improve their performance for post-combustion CO2 capture—What have we learned and what is still missing?[J]. Chemical Engineering Journal, 2022, 430:133096.
doi: 10.1016/j.cej.2021.133096 |
[9] | 董贝贝. CO2混合物热物性及生物能中化学吸收碳捕集技术经济分析[D]. 天津: 天津商业大学, 2021. |
[10] |
HAMMOND G P, SPARGO J. The prospects for coal-fired power plants with carbon capture and storage: A UK perspective[J]. Energy Conversion and Management, 2014, 86: 476-489.
doi: 10.1016/j.enconman.2014.05.030 |
[11] |
SAITO S, UDATSU M, KITAMURA H, et al. Development and evaluation of a new amine solvent at the Mikawa CO2 capture pilot plant[J]. Energy Procedia, 2014, 51: 176-183.
doi: 10.1016/j.egypro.2014.07.020 |
[12] |
SHAHBAZ M, ALNOUSS A, GHIAT I, et al. A comprehensive review of biomass based thermochemical conversion technologies integrated with CO2 capture and utilisation within BECCS networks[J]. Resources, Conservation and Recycling, 2021, 173(3):105734.
doi: 10.1016/j.resconrec.2021.105734 |
[13] |
ALI U, FONT-PALMA C, AKRAM M, et al. Comparative potential of natural gas, coal and biomass fired power plant with post-combustion CO2 capture and compression[J]. International Journal of Greenhouse Gas Control, 2017, 63: 184-193.
doi: 10.1016/j.ijggc.2017.05.022 |
[14] |
DINCA C, SLAVU N, CORMOŞ C C, et al. CO2 capture from syngas generated by a biomass gasification power plant with chemical absorption process[J]. Energy, 2018, 149: 925-936.
doi: 10.1016/j.energy.2018.02.109 |
[15] |
ZANG G, JIA J, TEJASVI S, et al. Techno-economic comparative analysis of biomass integrated gasification combined cycles with and without CO2 capture[J]. International Journal of Greenhouse Gas Control, 2018, 78: 73-84.
doi: 10.1016/j.ijggc.2018.07.023 |
[16] |
POUR N, WEBLEY P A, COOK P J. A sustainability framework for bioenergy with carbon capture and storage (BECCs) technologies[J]. Energy Procedia, 2017, 114: 6044-6056.
doi: 10.1016/j.egypro.2017.03.1741 |
[17] |
NOTZ R, MANGALAPALLY H P, HASSE H. Post combustion CO2 capture by reactive absorption: Pilot plant description and results of systematic studies with MEA[J]. International Journal of Greenhouse Gas Control, 2012, 6: 84-112.
doi: 10.1016/j.ijggc.2011.11.004 |
[18] | 白玫. 百年中国电力工业发展:回顾、经验与展望——写于纪念中国共产党成立100周年之际[J]. 价格理论与实践, 2021(5): 4-10. |
BAI Mei. China's power industry development: Review, experience and prospects—Writing to commemorating the 100th anniversary of the founding of the Communist Party of China[J]. Price: Theory & Practice, 2021(5): 4-10. | |
[19] | 全球能源互联网发展合作组织. 中国“十四五”电力发展规划研究[R]. 北京: 全球能源互联网发展合作组织, 2020. |
[20] | NOOKUEA W, DONG B, GUSTAFSSON K, et al. Differences between capturing CO2 from the combustion of biomass and coal by using chemical absorption[C]// Applied Energy Symposium 2020:Low Carbon Cities and Urban Energy Systems, 2020. |
[21] |
SU X, ZHANG L, XIAO Y, et al. Evaluation of a flue gas cleaning system of a circulating fluidized bed incineration power plant by the analysis of pollutant emissions[J]. Powder Technology, 2015, 286: 9-15.
doi: 10.1016/j.powtec.2015.07.038 |
[22] |
HETLAND J, YOWARGANA P, LEDUC S, et al. Carbon negative emissions: Systemic impacts of biomass conversion[J]. International Journal of Greenhouse Gas Control, 2016, 49: 330-342.
doi: 10.1016/j.ijggc.2016.03.017 |
[23] |
LÓPEZ R, FERNÁNDEZ C, MARTÍNEZ O, et al. Techno-economic analysis of a 15 MW corn-rape oxy-combustion power plant[J]. Fuel Processing Technology, 2016, 142: 296-304.
doi: 10.1016/j.fuproc.2015.10.020 |
[24] | FERON, P H M. Absorption-based post-combustion capture of carbon dioxide[M]. Duxford(UK): Woodhead Publishing, 2016: 519-551. |
[25] |
AFKHAMIPOUR M, MOFARAHI M. Review on the mass transfer performance of CO2 absorption by amine-based solvents in low- and high-pressure absorption packed columns[J]. RSC Advances, 2017, 7(29): 17857-17872.
doi: 10.1039/C7RA01352C |
[26] |
MANGALAPALLY H P, NOTZ R, HOCH S, et al. Pilot plant experimental studies of post combustion CO2 capture by reactive absorption with MEA and new solvents[J]. Energy Procedia, 2009, 1(1): 963-970.
doi: 10.1016/j.egypro.2009.01.128 |
[27] |
SAKWATTANAPONG R, AROONWILAS A, VEAWAB A. Behavior of reboiler heat duty for CO2 capture plants using regenerable single and blended alkanolamines[J]Industrial & Engineering Chemistry Research, 2005, 44(12), 4465-4473.
doi: 10.1021/ie050063w |
[28] | LÉONARD G. Optimal design of a CO2 capture unit with assessment of solvent degradation[D]. Liege (Belgium): University of Liege, 2013. |
[29] |
LÉONARD G, CROSSET C, TOYE D, et al. Influence of process operating conditions on solvent thermal and oxidative degradation in post-combustion CO2 capture[J]. Computers & Chemical Engineering, 2015, 83: 121-130.
doi: 10.1016/j.compchemeng.2015.05.003 |
[30] | 张东旺, 史鉴, 杨海瑞, 等. 碳定价背景下生物质发电前景分析[J]. 洁净煤技术, 2022, 28(3): 23-31. |
ZHANG Dongwang, SHI Jian, YANG Hairui, et al. Prospect of biomass power generation under the background of carbon pricing[J]. Clean Coal Technology, 2022, 28(3):23-31. | |
[31] | 张东旺, 范浩东, 赵冰, 等. 国内外生物质能源发电技术应用进展[J]. 华电技术, 2021, 43(3): 70-75. |
ZHANG Dongwang, FAN Haodong, ZHAO Bing, et al. Development of biomass power generation technology at home and abroad[J]. Huadian Technology, 2021, 43(3): 70-75. | |
[32] | 谭厚章, 刘洋, 王学斌, 等. 生物质成型燃料规模化掺烧技术及应用分析[J]. 洁净煤技术, 2021, 27(S2): 272-277. |
TAN Houzhang, LIU Yang, WANG Xuebin, et al. High efficiency and large scale biomass briquette co-firing and its application[J]. Clean Coal Technology, 2021, 27(S2): 272-277. | |
[33] | 兰凤春, 李晓宇, 龙辉. 欧洲大型燃煤锅炉耦合生物质发电技术综述[J]. 华电技术, 2020, 42(10): 88-94. |
LAN Fengchun, LI Xiaoyu, LONG Hui. Review of biomass power generation technology coupled with large coal-fired boilers in Europe[J]. Huadian Technology, 2020, 42(10): 88-94. | |
[34] | 北京中煤时代科技发展有限公司. 动力煤现货价格[EB/OL].(2022-03-20) [2022-04-21]. https://www.cctd.com.cn/index.php?m=content&c=index&a=lists&catid=614. |
[35] | EMBER. The latest data on EU ETS carbon prices[EB/OL].(2022-03-20) [2022-04-21]. https://ember-climate.org/data/data-tools/carbon-price-viewer. |
[1] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[2] | 黄晓凡, 李佳瑞, 刘晖, 汤效平, 王兹尧, 王彤. 梯次利用动力电池储能系统综合效益分析[J]. 综合智慧能源, 2024, 46(7): 63-73. |
[3] | 王京龙, 王晖, 杨野, 郑颖颖. 考虑多重不确定性的电-热-气综合能源系统协同优化方法[J]. 综合智慧能源, 2024, 46(4): 42-51. |
[4] | 苏盼盼, 王学涛, 邢利利, 李浩杰, 刘梦杰. 生物质预处理催化热解制备液体燃料研究进展[J]. 综合智慧能源, 2024, 46(3): 1-11. |
[5] | 郁海彬, 董烨, 翁锦德, 胡忻晨, 严威, 吴迪凡. 电力5G切片在城市配电网中的应用及经济效益研究[J]. 综合智慧能源, 2024, 46(1): 75-83. |
[6] | 万明忠, 王元媛, 李峻, 鹿院卫, 赵甜, 吴玉庭. 压缩空气储能技术研究进展及未来展望[J]. 综合智慧能源, 2023, 45(9): 26-31. |
[7] | 薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58. |
[8] | 李朋真, 贾冰珂, 刘艳红, 吴振龙. 燃烧后二氧化碳捕集系统的改进自抗扰控制[J]. 综合智慧能源, 2023, 45(8): 18-25. |
[9] | 刘天阳, 高亚静, 谢典, 赵良. 功能型零碳园区建设路径分析[J]. 综合智慧能源, 2023, 45(8): 44-52. |
[10] | 滕佳伦, 李宏仲. 碳中和背景下综合智慧能源的发展现状及关键技术分析[J]. 综合智慧能源, 2023, 45(8): 53-63. |
[11] | 胡开永, 刘峰, 吴秀杰, 胡芸清, 郑怡, 田绅. 基于Trnsys能耗预测的村镇建筑不同供能方式碳-经济分析[J]. 综合智慧能源, 2023, 45(8): 64-71. |
[12] | 王永真, 韩艺博, 韩恺, 韩俊涛, 宋阔, 张兰兰. 基于知识图谱的数据中心综合能源系统研究综述[J]. 综合智慧能源, 2023, 45(7): 1-10. |
[13] | 李宜哲, 王丹, 贾宏杰, 周天烁, 曹逸滔, 张帅, 刘佳委. 综合能源系统能量枢纽多样性建模和典型适用性研究[J]. 综合智慧能源, 2023, 45(7): 22-29. |
[14] | 吴彤, 王守鑫, 程星星, 刘坤坤. 工业共生体系下生物质资源化利用的物质能量流分析[J]. 综合智慧能源, 2023, 45(7): 30-39. |
[15] | 刘健, 刘雨鑫, 庄涵羽. 虚拟电厂关键技术及其建设实践[J]. 综合智慧能源, 2023, 45(6): 59-65. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||