综合智慧能源 ›› 2023, Vol. 45 ›› Issue (7): 30-39.doi: 10.3969/j.issn.2097-0706.2023.07.004
吴彤1,2(), 王守鑫3(
), 程星星1,2,*(
), 刘坤坤1,2
收稿日期:
2023-05-10
修回日期:
2023-06-05
接受日期:
2023-07-07
出版日期:
2023-07-25
通讯作者:
*程星星(1984),女,教授,博士,从事大气污染物减排方面的研究,xcheng@sdu.edu.cn。作者简介:
吴彤(1998),男,在读硕士研究生,从事可再生能源利用经济性分析评价方面的研究,202134517@mail.sdu.edu.cn;基金资助:
WU Tong1,2(), WANG Shouxin3(
), CHENG Xingxing1,2,*(
), LIU Kunkun1,2
Received:
2023-05-10
Revised:
2023-06-05
Accepted:
2023-07-07
Published:
2023-07-25
Supported by:
摘要:
在全球化石能源日益紧张的背景下,以电力、生物燃料为代表的生物能源得到广泛生产。但由于原料收集困难以及经济可行性问题,难以提升产业规模。工业共生是实现资源有效利用的可持续发展模式。在工业共生视角下,以生物质热电联产(CHP)厂、生物乙醇厂、厌氧消化(AD)厂、生物油精炼厂、水泥厂为协同对象,对生物质资源化利用的4种协同模式进行了物质能量流分析,并在此基础上进行了能效和经济性分析结果表明,工业共生体系有利于提高生物质产业之间的资源再利用,减少废物浪费。在生物质秸秆供应量为13.73 t/h,生物乙醇产量为660 L/h,生物油产量为1.01 t/h,AD的沼气产量为275 m3/h,水泥产量67.68 t/h的前提下,通过废物和副产品的再利用,4种协同模式分别额外产生了0.36,2.93,3.47,6.54 MW·h的电力以及1 365.8,4 548.8,2 883.2和29 489.4 MJ的热力。4种协同模式运行下能量利用效率比各工厂单独运行时分别变化了-2.66%,11.96%,4.15%和9.40%。每年可分别节约原料收集和运输成本约45.4,369.2,437.2,824.0 万元。这项工作为生物质工业之间协同发展提供了详细的数据参考。
中图分类号:
吴彤, 王守鑫, 程星星, 刘坤坤. 工业共生体系下生物质资源化利用的物质能量流分析[J]. 综合智慧能源, 2023, 45(7): 30-39.
WU Tong, WANG Shouxin, CHENG Xingxing, LIU Kunkun. Analysis of material and energy flows in biomass resource utilization under industrial symbiosis system[J]. Integrated Intelligent Energy, 2023, 45(7): 30-39.
表1
各工厂物料清单
产业 | 输入 | 输出 | 来源 | ||||
---|---|---|---|---|---|---|---|
项目 | 单位 | 数值 | 项目 | 单位 | 数值 | ||
生物乙醇厂 | 热 | MJ/m³ | 16 378.40 | 沼气 | m³/m³ | 113.29 | [ |
电力 | MW | 7 936.40 | 固体废物 | kg/m³ | 4 055.61 | ||
秸秆 | t/m³ | 5.85 | 废水 | m³/m³ | 18.25 | ||
过程水 | kg/m³ | 13 446.00 | 石膏 | kg/m³ | 1 117.00 | ||
循环水 | kg/m³ | 2 268.00 | 生物乙醇 | kg/h | 88 542.00 | ||
稀硫酸 | kg/m³ | 636.00 | |||||
Ca(OH)2 | kg/m³ | 481.00 | |||||
生物质CHP厂 | 秸秆 | t/h | 2.40 | 热 | MJ/h | 9 580.00 | [ |
秸秆热值 | MJ/kg | 14.90 | 电力 | MW | 2.780 | ||
合成气 | t/h | 6.07 | 灰分 | t/h | 0.13 | ||
生物油精炼厂 | 秸秆 | t/h | 4.69 | 生物油 | t/h | 1.01 | [ |
热量 | MJ/h | 20 520.00 | 生物炭 | t/h | 1.13 | ||
水 | t/h | 6.50 | 灰分 | t/h | 可忽略 | ||
电力 | MW | 0.210 | 废水 | t/h | 5.30 | ||
AD厂 | 粪便 | t/d | 14.00 | 沼气 | m³/d | 6 605.00 | [ |
固体废物 | t/d | 70.50 | 废液废渣 | t/d | 76.65 | ||
水泥厂 | 石灰石 | t/h | 163.80 | 水泥 | t/h | 135.36 | [ |
黏土 | t/h | 4.79 | 废气 | t/h | 648.37 | ||
空气 | m³/h | 786.44 | 高低温蒸汽 | t/h | 204.40 | ||
煤 | t/h | 14.89 | 灰尘 | t/h | 20.06 | ||
石膏 | t/h | 6.80 | 热力 | MJ/h | 16 560.00 | ||
电力 | MW | 13.800 |
表3
协同模式2物质能量分析结果
模式 | 能源 | 流量 | QLHV | 热量/(MJ·h-1) | 电力/(MW·h) |
---|---|---|---|---|---|
生物质CHP厂、AD厂、生物乙醇厂 | 秸秆 | 5.18 t/h | 14 900.00 MJ/t | 18 979.00 | 5.200 |
沼气(a) | 275.00 m³/h | 17.64 MJ/m³ | 1 569.80 | 0.437 | |
沼气(b) | 74.77 m³/h | 22.40 MJ/m³ | 542.00 | 0.150 | |
粪便/食品残余 | 0.58 t/h /2.94 t/h | — | -133.20 | -0.036 | |
秸秆(b) | 3.86 t/h | 14 900.00 MJ/t | -10 800.00 | -1.460 | |
木质素残留物 | 2.68 t/h | 19 000.00 MJ/t | 12 521.20 | 3.440 | |
总计 | 22 678.80 | 7.730 |
表4
协同模式3物质能量分析结果
模式 | 能源 | 流量 | QLHV | 热量/(MJ·h-1) | 电力/(MW·h) |
---|---|---|---|---|---|
生物质CHP厂、AD厂、生物乙醇厂、生物油精炼厂 | 秸秆 | 5.18 t/h | 14 900.00 MJ/t | 19 828.00 | 5.600 |
沼气(a) | 275.00 m³/h | 17.64 MJ/m³ | 1 640.60 | 0.470 | |
沼气(b) | 74.77 m³/h | 22.40 MJ/m³ | 566.40 | 0.160 | |
粪便/食品残余物 | 0.58 t/h /2.94 t/h | — | -133.20 | -0.036 | |
秸秆(b) | 3.86 t/h | 14 900.00 MJ/t | -10 800.00 | -1.460 | |
秸秆(c) | 4.69 t/h | 14 900.00 MJ/t | -20 520.00(高温烟气) | -0.210 | |
木质素/固体残留物 | 2.68 t/h | 19 000.00 MJ/t | 13 081.30 | 3.700 | |
生物炭(c) | 0.44 t/h | 25.30 MJ/kg | 2 859.80 | — | |
可燃气(c) | 0.81 t/h | 11.50 MJ/kg | 3 150.30 | 0.900 | |
烟气补偿 | — | — | -9 180.00 | -0.855 | |
总计 | 21 013.20 | 8.270 |
表5
协同模式4物质能量分析结果
模式 | 能源 | 流量 | QLHV | 热量/(MJ·h-1) | 电力/(MW·h) |
---|---|---|---|---|---|
生物质CHP厂、AD厂、生物乙醇厂、生物油精炼厂、水泥厂 | 秸秆 | 5.18 t/h | 14 900.00 MJ/t | 20 677.00 | 6.000 |
沼气(a) | 275.00 m³/h | 17.64 MJ/m³ | 1 712.40 | 0.500 | |
沼气(b) | 74.77 m³/h | 22.40 MJ/m³ | 591.20 | 0.174 | |
粪便/食品残余物 | 0.58 t/h /2.94 t/h | — | -133.20 | -0.036 | |
秸秆(b) | 3.86 t/h | 14 900.00 MJ/t | -10 800.00 | -1.460 | |
秸秆(c) | 4.69 t/h | 14 900.00 MJ/t | -20 52(高温烟气) | -0.210 | |
木质素/固体残留物(b) | 2.68 t/h | 19 000.00 MJ/t | 13 641.50 | 3.960 | |
生物炭(c) | 0.44 t/h | 25.30 MJ/kg | 2 982.30 | — | |
可燃气(c) | 0.81 t/h | 11.50 MJ/kg | 3 288.20 | 0.965 | |
高温蒸汽(d) | 102.20 t/h | — | 24 840.00 | 2.300 | |
煤、石灰石 | 7.445 t/h /81.90 t/h | 29.30 MJ/kg | — | — | |
烟气补偿 | — | — | -9 180.00 | -0.855 | |
总计 | 47 619.40 | 11.340 |
[1] |
LIU Z, LIU B, GUO J, et al. Conventional and advanced exergy analysis of a novel transcritical compressed carbon dioxide energy storage system[J]. Energy Conversion and Management, 2019, 198:111807.
doi: 10.1016/j.enconman.2019.111807 |
[2] |
GENG L, WANG Y, WANG Y, et al. Effect of the injection pressure and orifice diameter on the spray characteristics of biodiesel[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(3):331-339.
doi: 10.1016/j.jtte.2018.12.004 |
[3] |
YANG Y, TIAN Z, LAN Y, et al. An overview of biofuel power generation on policies and finance environment, biofuelsapplied, device and performance[J]. Journal of Traffic and Transportation Engineering (English Edition), 2021, 8(4):534-553.
doi: 10.1016/j.jtte.2021.07.002 |
[4] | XU X L, CHEN Y J. A comprehensive model to analyze straw recycling logistics costs for sustainable development: Evidence from biomass power generation[J]. Environmental Progress & Sustainable Energy, 2020, 39(4): e13394. |
[5] |
LI K, SONG J, DUAN H, et al. Integrated assessment of straw utilization for energy production from views of regional energy,environmental and socioeconomic benefits[J]. Journal of Cleaner Production, 2018, 190:787-798.
doi: 10.1016/j.jclepro.2018.04.191 |
[6] |
OBYDENKOVA S V, KOURIS P D, HENSEN E J M. Environmental economics of lignin derived transport fuels[J]. Bioresour Technol, 2017, 243:589-599.
doi: 10.1016/j.biortech.2017.06.157 |
[7] |
CHOWDHURY T, CHOWDHURY H. Is the commercial sector of Bangladesh sustainable?—Viewing via an exergetic approach[J]. Journal of Cleaner Production, 2019, 228:544-556.
doi: 10.1016/j.jclepro.2019.04.270 |
[8] |
MIRKOUEI A, HAAPALA K R, SESSIONS J, et al. A mixed biomass-based energy supply chain for enhancing economic and environmental sustainability benefits: A multi-criteria decision making framework[J]. Applied Energy, 2017, 206: 1088-1101.
doi: 10.1016/j.apenergy.2017.09.001 |
[9] |
MARTIN M, HARRIS S. Prospecting the sustainability implications of an emerging industrial symbiosis network[J]. Resources,Conservation and Recycling, 2018, 138:246-256.
doi: 10.1016/j.resconrec.2018.07.026 |
[10] |
DADDI T, NUCCI B, IRALDO F. Using Life Cycle Assessment(LCA) to measure the environmental benefits of industrial symbiosis in an industrial cluster of SMEs[J]. Journal of Cleaner Production, 2017, 147:157-164.
doi: 10.1016/j.jclepro.2017.01.090 |
[11] |
CHERTOW M R. Industrial symbiosis:Literature and taxonomy[J]. Annual Review of Energy and the Environment, 2000, 25(1):313-337.
doi: 10.1146/energy.2000.25.issue-1 |
[12] |
ZHANG Y, ZHENG H, CHEN B, et al. Social network analysis and network connectedness analysis for industrial symbiotic systems: Model development and case study[J]. Frontiers of Earth Science, 2012, 7(2):169-181.
doi: 10.1007/s11707-012-0349-4 |
[13] |
FANG K, DONG L, REN J Z, et al. Carbon footprints of urban transition: Tracking circular economy promotions in Guiyang,China[J]. Ecological Modelling, 2017, 365:30-44.
doi: 10.1016/j.ecolmodel.2017.09.024 |
[14] | 鞍钢集团鞍山钢铁推出“1+6”产业规划[J]. 现代矿业, 2018(2):197. |
[15] | 鞠沾仑, 金庆珍, 张海昕, 等. 山东钢铁行业转型升级的思考[C]// 2014年山东省科协学术年会论文集. 2014:262-267. |
[16] |
GONELA V, ZHANG J. Design of the optimal industrial symbiosis system to improve bioethanol production[J]. Journal of Cleaner Production, 2014, 64: 513-534.
doi: 10.1016/j.jclepro.2013.07.059 |
[17] |
NEVES A, GODINA R, AZEVEDO S, et al. A comprehensive review of industrial symbiosis[J]. Journal of Cleaner Production, 2019, 247(20):119113.
doi: 10.1016/j.jclepro.2019.119113 |
[18] | 王春燕, 王震. 迁安市工业共生的影响因素分析[C]// 2015年中国环境科学学会年会论文集. 2015:477-485. |
[19] |
DONG H, LIU Z, GENG Y, et al. Evaluating environmental performance of industrial park development: The case of Shenyang[J]. Journal of Industrial Ecology, 2018, 22(6): 1402-1412.
doi: 10.1111/jiec.2018.22.issue-6 |
[20] | 李嘉祺, 陈艳波, 陈来军, 等. 工业园区综合能源系统低碳经济优化运行模型[J]. 高电压技术, 2022, 48(8):3190-3200. |
LI Jiaqi, CHEN Yanbo, CHEN Laijun, et al. Low-carbon economy optimization model of integrated energy system in industrial parks[J]. High Voltage Engineering, 2022, 48(8):3190-3200. | |
[21] |
PARK J, PARK J M, PARK H S. Scaling‐up of industrial symbiosis in the Korean National Eco‐Industrial Park Program: Examining its evolution over the 10 years between 2005-2014[J]. Journal of Industrial Ecology, 2019, 23(1): 197-207.
doi: 10.1111/jiec.2019.23.issue-1 |
[22] |
CAO X, WEN Z, TIAN H, et al. Transforming the cement industry into a key environmental infrastructure for urban ecosystem: A case study of an industrial city in China[J]. Journal of Industrial Ecology, 2018, 22(4):881-893.
doi: 10.1111/jiec.12638 |
[23] |
JAYASUNDARA P M, JAYASINGHET K, RATHNAYAKE M. Process simulation integrated life cycle net energy analysis and ghg assessment of fuel-grade bioethanol production from unutilized rice straw[J]. Waste and Biomass Valorization, 2022. 13(8):3689-3705.
doi: 10.1007/s12649-022-01763-4 |
[24] |
CUSENZA M A, CELLURA M, GUARINO F, et al. Life cycle environmental assessment of energy valorization of the residual agro-food industry[J]. Energies, 2021, 14(17):5491.
doi: 10.3390/en14175491 |
[25] |
VAN SCHALKWYK D L, MANDEGARI M, FARZAD S, et al. Techno-economic and environmental analysis of bio-oil production from forest residues via non-catalytic and catalytic pyrolysis processes[J]. Energy Conversion and Management, 2020, 213: 112815..
doi: 10.1016/j.enconman.2020.112815 |
[26] | RANGANATHAN P. Preliminary techno-economic evaluation of 2G ethanol production with co-products from rice straw[J]. Biomass Conversion and Biorefinery, 2020(3):3673-3686. |
[27] |
RATHNAYAKE M, CHAIREONGSIRIKUL T. Process simulation based life cycle assessment for bioethanol production from cassava, molassescane, and strawrice[J]. Journal of Cleaner Production, 2018, 190:24-35.
doi: 10.1016/j.jclepro.2018.04.152 |
[28] |
ZHENG Y, LIU C, ZHU J, et al. Carbon footprint analysis for biomass-fueled combined heat and power station: A case study[J]. Agriculture, 2022, 12(8):1146.
doi: 10.3390/agriculture12081146 |
[29] |
CAVALCANTI E J C, CARVALHO M, DA SILVA D R S. Energy, exergy and exergoenvironmental analyses of a sugarcane bagasse power cogeneration system[J]. Energy conversion and management, 2020, 222: 113232.
doi: 10.1016/j.enconman.2020.113232 |
[30] |
CHEN H, XUE K, WU Y, et al. Thermodynamic and economic analyses of a solar-aided biomass-fired combined heat and power system[J]. Energy, 2021, 214: 119023.
doi: 10.1016/j.energy.2020.119023 |
[31] | YANG Q, ZHOU H, ZHANG X, et al. Hybrid life-cycle assessment for energy consumption and greenhouse gas emissions of a typical biomass gasification power plant in China[J]. Journal of Cleaner Production, 2018: 661-671. |
[32] |
ZAINI I N, SOPHONRAT N, SJBLOM K, et al. Creating values from biomass pyrolysis in sweden: Co-production of H2,biocarbon,and bio-oil[J]. Processes, 2021, 9(3):415.
doi: 10.3390/pr9030415 |
[33] |
INAYAT A, AHMED A, TARIQ R, et al. Techno-economical evaluation of bio-oil production via biomass fast pyrolysis process: A review[J]. Frontiers in Energy Research, 2022, 9: 770355.
doi: 10.3389/fenrg.2021.770355 |
[34] | RAVENDRAN R R, ABDULRAZIK A, ZAILAN R. Aspen Plus simulation of optimal biogas production in anaerobic digestion process IOP conference series[J]. Materials Science and Engineering, 2019, 702(1):012001. |
[35] | PUTRA M A, TEH K C, TAN J, et al. Sustainability assessment of Indonesian cement manufacturing via integrated life cycle assessment and analytical hierarchy process method[J]. Environmental Science and Pollution Research, 2020(4):29352-29360. |
[36] |
GAO T, SHEN L, SHEN M, et al. Analysis of material flow and consumption in cement production process[J]. Journal of Cleaner Production, 2016, 112(JAN.20PT.1):553-565.
doi: 10.1016/j.jclepro.2015.08.054 |
[1] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[2] | 史明明, 朱睿, 刘瑞煌. 交直流电力系统与供热系统联合经济调度[J]. 综合智慧能源, 2024, 46(4): 10-16. |
[3] | 王京龙, 王晖, 杨野, 郑颖颖. 考虑多重不确定性的电-热-气综合能源系统协同优化方法[J]. 综合智慧能源, 2024, 46(4): 42-51. |
[4] | 王永旭, 周天羽, 邓庚庚, 徐钢, 王卓. 配置吸收式热泵的热电联产机组厂级智能运行优化[J]. 综合智慧能源, 2024, 46(3): 20-28. |
[5] | 胡开永, 刘峰, 吴秀杰, 胡芸清, 郑怡, 田绅. 基于Trnsys能耗预测的村镇建筑不同供能方式碳-经济分析[J]. 综合智慧能源, 2023, 45(8): 64-71. |
[6] | 商永强, 王文峰, 王为术, 郭嘉伟, 郑毫楠, 葛学文. 超长距蒸汽供热管道保温性能分析[J]. 综合智慧能源, 2023, 45(4): 47-51. |
[7] | 曾慧, 杜源, 李涛, 薛屹洵, 孙开元, 夏天, 孙宏斌. 考虑碳交易与绿证交易的电-热耦合园区低碳规划[J]. 综合智慧能源, 2023, 45(2): 22-29. |
[8] | 葛磊蛟, 李京京, 李鹏, 苏航. 电力潮流和㶲流联合驱动的热电联产综合能源系统优化运行方法[J]. 综合智慧能源, 2023, 45(12): 1-9. |
[9] | 缪蔡然, 朱姚培, 王琦. 考虑气热惯性的综合能源系统优化配置研究[J]. 综合智慧能源, 2023, 45(10): 44-52. |
[10] | 邬东烨, 杨迪, 金旭, 洪文鹏, 叶绍义, 赵晓明. 综合能源系统潮流分析模型与方法的研究综述[J]. 综合智慧能源, 2023, 45(10): 70-81. |
[11] | 王开亭, 李小斌, 张红娜, 刘糁, 曲凯阳, 李凤臣. 集中供热系统中应用湍流减阻剂的节能减排综合性能评价[J]. 综合智慧能源, 2022, 44(9): 40-50. |
[12] | 梁远, 付岩峰, 方小锋, 成红燕, 孟春霖, 颜莹莹, 陈北洋. 碳中和背景下基于AB工艺的污水处理厂能量自持分析[J]. 华电技术, 2021, 43(6): 55-60. |
[13] | 李娜, 易祖耀, 白银雷. 先进供热与智慧发电技术现状及发展趋势[J]. 华电技术, 2021, 43(3): 31-39. |
[14] | 方旭, 彭雪风, 张凯, 马敬邦, 赵瑞祥, 王金星. 燃煤热电联产系统冷端余能供热改造研究进展[J]. 华电技术, 2021, 43(3): 48-56. |
[15] | 张东旺, 范浩东, 赵冰, 王家林, 巩太义, 张缦, 李诗媛, 杨海瑞, 吕俊复. 国内外生物质能源发电技术应用进展[J]. 华电技术, 2021, 43(3): 70-75. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||