[1] |
朱博, 吴水军, 黄柯昊, 等. 水风光互补系统一次调频方案研究[J]. 太阳能学报, 2024, 45(5):412-421.
|
|
ZHU Bo, WU Shuijun, HUANG Kehao, et al. Research on primary frequency regulation scheme of water-wind-solar complementary system[J]. Acta Energiae Solaris Sinica, 2024, 45(5):412-421.
|
[2] |
瞿国华. 我国能源转型与过渡能源的合理选择[J]. 科学发展, 2022(12):88-96.
|
|
QU Guohua. China's rational choice of energy transition and transition energy[J]. Scientific Development, 2022(12):88-96.
|
[3] |
KUMAR D, CHATTERJEE K. A review of conventional and advanced MPPT algorithms for wind energy systems[J]. Renewable and Sustainable Energy Reviews, 2016, 55:957-970.
|
[4] |
宋冬然, 沈旭涛, 黄朝能, 等. 基于代理模型辅助改进标准粒子群算法的浮式风电场功率优化[J]. 中国电机工程学报, 2023, 43(S1):217-228.
|
|
SONG Dongran, SHEN Xutao, HUANG Chaoneng, et al. Power optimization of floating wind farm based on improved standard particle swarm optimization assisted by proxy model[J]. Proceedings of the CSEE, 2023, 43(S1):217-228.
|
[5] |
NASH R, NOURI R, VASEL A. Wind turbine wake control strategies:A review and concept proposal[J]. Energy Conversion and Management, 2021, 245:114581.
|
[6] |
CAO L Y, WEI W, ZHANG J W, et al. Adaptive economic predictive control for offshore wind farm active yaw considering generation uncertainty[J]. Applied Energy, 2023, 351:121849.
|
[7] |
李雄威, 徐家豪, 朱润泽, 等. 基于偏航尾流模型的风电场功率协同优化研究[J]. 太阳能学报, 2022, 43(10):144-151.
doi: 10.19912/j.0254-0096.tynxb.2021-1292
|
|
LI Xiongwei, XU Jiahao, ZHU Runze, et al. Study on power collaborative optimization of wind farm based on yaw wake model[J]. Acta Energiae Solaris Sinica, 2022, 43(10):144-151.
doi: 10.19912/j.0254-0096.tynxb.2021-1292
|
[8] |
SUN X X, LI Y M, ZHANG F, et al. Decentralized yaw optimization for maximizing wind farm production based on deep reinforcement learning[J]. Energy Conversion and Management, 2023, 286:1-11.
|
[9] |
LIU Y, ZHANG J H, ZHOU J H. The influence of tilt angle on the aerodynamic performance of a wind turbine[J]. Applied Sciences, 2020, 10(15):5380.
|
[10] |
XU X H, LIU D F, LI Y, et al. Collective large-scale wind farm multivariate power output control based on hierarchical communication multi-agent proximal policy optimization[J]. Renewable Energy, 2023, 219:119479.
|
[11] |
SUTTON R S, BARTO A G. Reinforcement learning:An introduction[M]. MIT Press, 2018.
|
[12] |
LI Y. Deep reinforcement learning:An overview[Z]. 2017.
|
[13] |
王康平, 张兴科, 刘财华, 等. 基于自适应下垂控制的风电场无功电压控制策略[J]. 综合智慧能源, 2022, 44(4):12-19.
doi: 10.3969/j.issn.2097-0706.2022.04.002
|
|
WANG Kangping, ZHANG Xingke, LIU Caihua, et al. Reactive power and voltage control strategy based on adaptive droop control for wind power plants[J]. Integrated Intelligent Energy, 2022, 44(4):12-19.
doi: 10.3969/j.issn.2097-0706.2022.04.002
|
[14] |
刘玉山, 胡阔海, 王灵梅, 等. 考虑尾流效应的风电场输出功率优化[J]. 可再生能源, 2023, 41(10):1336-1342.
|
|
LIU Yushan, HU Kuohai, WANG Lingmei, et al. Optimization of wind farm output power considering wake effect[J]. Renewable Energy Resources, 2023, 41(10):1336-1342.
|
[15] |
PADULLAPARTHI V R, NAGARATHINAM S, VASAN A, et al. Falcon-farm Level control for wind turbines using multi-agent deep reinforcement learning[J]. Renewable Energy, 2022, 181:445-456.
|
[16] |
HAI B V, THANH N T, MAN K H. Distributed operation of wind farm for maximizing output power:A multi-agent deep reinforcement learning approach[J]. IEEE ACCESS, 2020, 8:173136-173146.
|
[17] |
CHEN Y, MEI T, LIU W X, et al. Wind farm power generation control via double-network-based deep reinforcement learning[J]. IEEE Transactions on Industrial Informatics, 2021, 18(4):2321-2330.
|
[18] |
JONKMAN J, BUTTERFIELD S, MUSIAL W, et al. Definition of a 5 MW reference wind turbine for offshore system development[R]. National Renewable Energy Lab, 2009.
|
[19] |
BASTANKHAH M, PORTÉ-AGEL F. Experimental and theoretical study of wind turbine wakes in yawed conditions[J]. Journal of Fluid Mechanics, 2016, 806:506-541.
|
[20] |
QIAN G W, ISHIHARA T. Wind farm power maximization through wake steering with a new multiple wake model for prediction of turbulence intensity[J]. Energy, 2021, 220:119680.
|
[21] |
崔双双, 孙单勋. 分工况下风电机组各变量相关性研究[J]. 综合智慧能源, 2022, 44(12):49-55.
doi: 10.3969/j.issn.2097-0706.2022.12.007
|
|
CUI Shuangshuang, SUN Shanxun. Study on the correlation of wind turbine variables under different conditions[J]. Integrated Intelligent Energy, 2022, 44(12):49-55.
doi: 10.3969/j.issn.2097-0706.2022.12.007
|
[22] |
袁孝科, 沈石兰, 张茂松, 等. 基于可解释强化学习的智能虚拟电厂最优调度[J/OL]. 综合智慧能源,1-9(2024-09-29)[2024-10-06]. http://kns.cnki.net/kcms/detail/41.1461.TK.20240927.1628.002.html.
|
|
YUAN Xiaoke, SHEN Shilan, ZHANG Maosong, et al. Optimal scheduling of intelligent virtual power plants based on explainable reinforcement learning[J/OL]. Integrated Intelligent Energy,1-9(2024-09-29)[2024-10-06]. http://kns.cnki.net/kcms/detail/41.1461.TK.20240927.1628.002.html.
|
[23] |
Ministry of economic affairs netherlands enterprise agency and climate policy[Z]. Hollandse Kust Noord (Site b) Dataset, 2019. https://offshorewind.rvo.nl/file/view/55040229/Processed+data+HKNB.
|
[24] |
NEUSTROEV G, Andringa S P E, VERZIJLBERGH R A, et al. Deep reinforcement learning for active wake control[C]// Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems. 2022: 944-953.
|