综合智慧能源 ›› 2025, Vol. 47 ›› Issue (1): 18-25.doi: 10.3969/j.issn.2097-0706.2025.01.003

• 基于AI的新型电力系统调度 • 上一篇    下一篇

基于深度强化学习的风电场功率多变量综合优化控制

张华钦1,2(), 刘伟3,*(), 王慧1,2, 李雷孝1,2, 莎仁高娃4   

  1. 1.内蒙古工业大学 数据科学与应用学院,呼和浩特 010080
    2.内蒙古自治区基于大数据的软件服务工程技术研究中心,呼和浩特 010080
    3.内蒙古巴彦淖尔市临河区气象局,内蒙古 巴彦淖尔 015000
    4.内蒙古自治区公安厅,呼和浩特 010080
  • 收稿日期:2024-10-08 修回日期:2024-11-13 出版日期:2025-01-25
  • 通讯作者: *刘伟(1966),男,高级工程师,从事农业气象和气候资源开发利用方面的研究,723674266@qq.com
  • 作者简介:张华钦(2000),男,硕士生,从事可再生能源控制,深度强化学习方面的研究,20221800730@imut.edu.cn
  • 基金资助:
    国家自然科学基金项目(62362055);内蒙古自治区气象局科技创新项目(nmqxkjcx202312);内蒙古自治区气象局科技创新项目(nmqxkjcx202435)

Multivariable integrated power control optimization of wind farms based on deep reinforcement learning

ZHANG Huaqin1,2(), LIU Wei3,*(), WANG Hui1,2, LI Leixiao1,2, Sharengaowa4   

  1. 1. School of Data Science and Applications,Inner Mongolia University of Technology,Hohhot 010080,China
    2. Inner Mongolia Autonomous Region Engineering & Technology Research Center of Big Data Based Software Service,Hohhot 010080, China
    3. Linhe District Meteorological Bureau, Bayannur 015000,China
    4. Public Security Department of Inner Mongolia Autonomous Region,Hohhot 010080,China
  • Received:2024-10-08 Revised:2024-11-13 Published:2025-01-25
  • Supported by:
    National Natural Science Foundation of China(62362055);Scientific and Technological Innovation Project of Meteorological Bureau of Inner Mongolia Autonomous Region(nmqxkjcx202312);Scientific and Technological Innovation Project of Meteorological Bureau of Inner Mongolia Autonomous Region(nmqxkjcx202435)

摘要:

我国提出“双碳”目标,提出构建以新能源为主体的新型电力系统。依据真实风电场的数据,通过研究优化控制策略,提升风电场输出功率,从而进一步提高风电的利用率。聚焦风电机组间尾流效应问题,提出一种基于无模型深度强化学习(DRL)的风电场功率多变量优化控制策略。该策略采用近端策略优化(PPO)算法对动态风电场中的风机偏航角、倾斜角、叶片桨距角和叶尖速比(TSR)多个变量进行优化,通过智能体在运行过程中产生的数据进行智能学习,从而得到最优控制策略,克服传统数学优化方法的局限性。仿真结果表明,与现有的风电机组控制算法相比,基于无模型DRL的多变量优化控制策略显著提高了计算效率,降低了参数优化难度,优化了尾流方向和强度,优化后平均输出功率提升37.08%。

关键词: 风电场, 深度强化学习, 尾流控制, 多变量控制, 功率优化, 近端策略优化, “双碳”目标, 新型电力系统

Abstract:

China has proposed the"dual carbon"strategy,aiming to build a new power system with renewable energy as the primary component.Based on real wind farm data,optimization control strategies were proposed to improve the wind farm's output power,thereby further enhancing wind energy utilization.The wake effects between wind turbines were the main focus,and a wind farm power multivariable optimization control strategy based on model-free deep reinforcement learning(DRL)was proposed.The strategy employed the Proximal Policy Optimization(PPO)algorithm to optimize multiple variables,including the yaw angle,tilt angle,blade pitch angle,and tip speed ratio(TSR) in a dynamic wind farm.Through intelligent agents learning from the data generated by the agent during operation,an optimal control strategy was obtained,overcoming the limitations of traditional mathematical optimization methods. Simulation results showed that,compared to existing wind turbine control algorithms,the model-free DRL-based multivariable optimization control strategy significantly improved computational efficiency,reduced the difficulty of parameter optimization,and optimized the direction and strength of the wake.The optimized average output power was increased by 37.08%.

Key words: wind farm, deep reinforcement learning, wake control, multivariable control, power optimization, PPO, "dual carbon" strategy, new power system

中图分类号: