综合智慧能源 ›› 2025, Vol. 47 ›› Issue (12): 1-13.doi: 10.3969/j.issn.2097-0706.2025.12.001

• 储能技术 •    下一篇

热化学储热钙循环改性强化研究进展

耿博辰1(), 石鑫2(), 熊亚选1,*(), 蒋泽龄1()   

  1. 1.北京建筑大学 供热、供燃气、通风及空调工程北京市重点实验室,北京 100044
    2.华电郑州机械设计研究院有限公司,郑州 450046
  • 收稿日期:2025-03-07 修回日期:2025-04-25 出版日期:2025-12-25
  • 通讯作者: * 熊亚选(1977),男,教授,博士,从事低碳储能和供热系统精准节能方面的研究,xiongyaxuan@bucea.edu.cn
  • 作者简介:耿博辰(2002),男,硕士生,从事热化学储热方面的研究,1289206937@qq.com
    石鑫(1984),男,高级工程师,从事新能源及多能耦合联合供能方面的研究,shixin@chec.com.cn
    蒋泽龄(2002),女,硕士生,从事储热材料设计开发和热物性提升方面的研究,876537897@qq.com
  • 基金资助:
    国家重点研发计划项目(2025YFE0118800)

Research progress on modification methods for calcium looping thermochemical heat storage

GENG Bochen1(), SHI Xin2(), XIONG Yaxuan1,*(), JIANG Zeling1()   

  1. 1. Beijing Key Laboratory of Heating, Gas Supply, Ventilating and Air Conditioning Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
    2. Huadian Zhengzhou Mechanical Design Institute Company Limited,Zhengzhou 450046, China
  • Received:2025-03-07 Revised:2025-04-25 Published:2025-12-25
  • Supported by:
    National Key R&D Program of China(2025YFE0118800)

摘要:

综述了钙循环热化学储热技术的研究进展,重点分析了钙基材料的物化特性、改性方法、反应器设计及系统集成的研究现状。介绍了钙基材料的主要类型,包括天然钙基材料、化学合成钙基材料、掺杂钙基材料、复合钙基材料等,详细讨论了其物理特性(颗粒尺寸、比表面积、孔隙结构、热导率和机械强度)和化学特性对储热性能的影响。对钙基材料的物化特性进行了深入探讨,指出其对储热效率和循环稳定性具有显著影响。介绍了钙基材料的改性方法,包括物理改性和化学改性,其中物理改性涉及颗粒尺寸控制和载体添加,而化学改性包括掺杂金属氧化物和表面涂层。通过这些方法,可显著提升钙基材料的循环稳定性和抗烧结性。接着,讨论了钙循环储热反应器及系统的设计与优化,包括固定床、流化床和其他新型反应器。这些反应器在传热传质效率、颗粒损耗平衡及系统集成灵活性方面具有各自的优势和挑战。对不同反应器与系统集成的协同效应进行分析,进一步探讨了钙循环储热技术的储热密度、机械强度优势及当前面临的材料失活、系统效率和经济性等挑战。对未来研究方向进行展望,指出需进一步开发高稳定性材料、优化反应器设计并进行全生命周期经济分析,以推动钙循环储热技术的商业化应用。

关键词: 钙循环, 热化学储热, 改性方法, 钙基材料, 反应器设计

Abstract:

Recent advances in calcium looping thermochemical heat storage technologies are summarized, with a focus on the current research status of physicochemical properties, modification strategies, reactor design, and system integration of calcium-based materials. The main types of calcium-based materials are introduced, including naturally occurring, chemically synthesized, doped, and composite calcium-based materials, followed by a detailed discussion of how their physical characteristics and chemical properties (particle size, specific surface area, pore structure, thermal conductivity, and mechanical strength) influence heat storage performance. The physicochemical properties of these materials are thoroughly discussed, indicating their significant influence on heat storage efficiency and cyclic stability. The modification methods for calcium-based materials are introduced in detail, including physical modification such as particle size control and support addition, and chemical modification like metal oxide doping and surface coating. Through these methods, the cyclic stability and sintering resistance of calcium-based materials can be significantly enhanced. The design and optimization of calcium looping heat storage reactors and systems are discussed, including fixed-bed, fluidized-bed, and other novel reactor types. These reactors exhibit respective advantages and challenges in terms of heat and mass transfer efficiency, particle attrition balance, and system integration flexibility. The synergistic effects between reactor types and system configurations are analyzed, and the advantages of calcium looping heat storage in terms of heat storage density and mechanical strength are further explored, as well as challenges such as material deactivation, low system efficiency, and economic feasibility. Future research directions are outlined, highlighting the need to further develop highly stable materials, optimize reactor design, and conduct full life-cycle techno-economic analysis to promote the commercial application of calcium looping thermochemical heat storage technology.

Key words: calcium looping, thermochemical energy storage, modification method, calcium-based materials, reactor design

中图分类号: