[1] |
马群, 鲁萌, 郭强, 等. 低碳经济形势下煤矿节能减排管理方法研究[J]. 现代工业经济和信息化, 2023, 13(10):300-302.
|
|
MA Qun, LU Meng, GUO Qiang, et al. Management methods of energy saving and emission reduction in coal mines under low carbon economic situation[J]. Modern Industrial Economy and Informationization, 2023, 13(10):300-302.
|
[2] |
王龙飞, 王帅, 李庆, 等. “双碳”目标下西部地区煤矿多能互补供能研究[J]. 中国煤炭, 2023, 49(10):36-42.
|
|
WANG Longfei, WANG Shuai, LI Qing, et al. Research on multi-energy complementary energy supply in coal mines in Western China under the goals of carbon peak and carbon neutrality[J]. China Coal, 2023, 49(10):36-42.
|
[3] |
贠保记, 赵文, 王建学, 等. 低碳矿区综合能源系统经济运行优化研究[J]. 电力系统保护与控制, 2024, 52(6):177-187.
|
|
YUAN BaoJi, ZHAO Wen, WANG Jianxue, et al. Research on economic operation optimization of an integrated energy system in low-carbon mining area[J]. Power System Protection and Control, 2024, 52(6): 177-187
|
[4] |
刘文革, 徐鑫, 韩甲业, 等. 碳中和目标下煤矿甲烷减排趋势模型及关键技术[J]. 煤炭学报, 2022, 47(1):470-479.
|
|
LIU Wenge, XU Xin, HAN Jiaye, et al. Trend model and key technologies of coal mine methane emission reduction aiming for the carbon neutrality[J]. Journal of China Coal Society, 2022, 47(1): 470-479.
|
[5] |
杨明杰, 胡扬宇, 千海霞, 等. 计及碳排放的综合能源配网日前与日内多时间尺度优化调度[J]. 电力系统保护与控制, 2023, 51(5):96-106.
|
|
YANG Mingjie, HU Yangyu, QIAN Haixia, et al. Optimization of day-ahead and intra-day multi-time scale scheduling for integrated power-gas energy system considering carbon emission[J]. Power System Protection and Control, 2023, 51(5): 96-106.
|
[6] |
KURNIAWAN T A, OTHMAN M H D, LIANG X, et al. Decarbonization in waste recycling industry using digitalization to promote net-zero emissions and its implications on sustainability[J]. Journal of Environmental Management, 2023, 338: 117765.
|
[7] |
HU H J, SUN X Y, ZENG B, et al. Enhanced evolutionary multi-objective optimization-based dispatch of coal mine integrated energy system with flexible load[J]. Applied Energy, 2022, 307: 118130.
|
[8] |
ZHANG X P, BAI Y K, ZHANG Y Z. Collaborative optimization for a multi-energy system considering carbon capture system and power to gas technology[J]. Sustainable Energy Technologies and Assessments, 2022, 49: 101765.
|
[9] |
HU P D, LEI Y Y, JIA X P, et al. Study on collaborative optimization of mine integrated energy system planning and operation considering economy-environment[C]// Proceedings of 2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE). IEEE, 2023: 1270-1276.
|
[10] |
NAZARI M E, ARDEHALI M M. Profit-based unit commitment of integrated CHP-thermal-heat only units in energy and spinning reserve markets with considerations for environmental CO2 emission cost and valve-point effects[J]. Energy, 2017,133: 621-635.
|
[11] |
张少锋, 李佳瑞, 曹语涵, 等. 西北地区煤矿与新能源融合发展实施路径研究[J]. 煤炭工程, 2023, 55(12):178-183.
|
|
ZHANG Shaofeng, LI Jiarui, CAO Yuhan, et al. Implementation path of integrated development of coal mines and new energy in Northwest China[J]. Coal Engineering, 2023, 55(12): 178-183.
|
[12] |
陈一鸣, 刘赟静, 王金鑫. 考虑风电出力不确定性的多源联合系统双层优化调度[J]. 东北电力大学学报, 2024, 44(1):17-24.
|
|
CHEN Yiming, LIU Yunjing, WANG Jinxin. Bi-level optimal scheduling of multi-source combined system considering wind power output uncertainty[J]. Journal of Northeast Electric Power University, 2024, 44(1): 17-24.
|
[13] |
ZHAO X W, MU H L, LI N, et al. Optimization and analysis of an integrated energy system based on wind power utilization and on-site hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2023, 48(57): 21531-21543.
|
[14] |
ZHANG L, ZHANG T W, ZHANG K, et al. Research on power fluctuation strategy of hybrid energy storage to suppress wind-photovoltaic hybrid power system[J]. Energy Reports, 2023, 10: 3166-3173.
|
[15] |
何平, 李桂鑫. 清洁能源高比例接入与终端再电气化对城市电网的影响分析[J]. 电力系统及其自动化学报, 2021, 33(6):143-150.
|
|
HE Ping, LI Guixin. Analysis of influences of high-proportion clean energy access and terminal reelectrification on urban power grid[J]. Proceedings of the CSU-EPSA, 2021, 33(6): 143-150.
|
[16] |
YANG Q, WANG J X, LIANG J B, et al. Chance-constrained coordinated generation and transmission expansion planning considering demand response and high penetration of renewable energy[J]. International Journal of Electrical Power & Energy Systems, 2024, 155: 109571.
|
[17] |
GAO L A, FEI F, JIA Y C, et al. Optimal dispatching of integrated agricultural energy system considering ladder-type carbon trading mechanism and demand response[J]. International Journal of Electrical Power & Energy Systems, 2024, 156: 109693.
|
[18] |
刘光宇, 韩东升, 刘超杰, 等. 考虑双重需求响应及阶梯型碳交易的综合能源系统双时间尺度优化调度[J]. 电力自动化设备, 2023, 43(5):218-225.
|
|
LIU Guangyu, HAN Dongsheng, LIU Chaojie, et al. Dual time scale optimal scheduling of integrated energy system considering dual demand response and stepped carbon trading[J]. Electric Power Automation Equipment, 2023, 43(5): 218-225.
|
[19] |
赵晶晶, 朱炯达, 李振坤, 等. 考虑灵活性供需鲁棒平衡的两阶段配电网日内分布式优化调度[J]. 电力系统自动化, 2022, 46(16):61-71.
|
|
ZHAO Jingjing, ZHU Jiongda, LI Zhenkun, et al. Two-stage intraday distributed optimal dispatch for distribution network considering robust balance between flexibility supply and demand[J]. Automation of Electric Power Systems, 2022, 46(16): 61-71.
|
[20] |
王振浩, 马爽, 李国庆, 等. 考虑复合储能电站接入的电网日前-日内两阶段滚动优化调度[J]. 太阳能学报, 2022, 43(10):400-408.
doi: 10.19912/j.0254-0096.tynxb.2021-0444
|
|
WANG Zhenhao, MA Shuang, LI Guoqing, et al. Day-ahead and intra-day two-stage rolling optimal dispatch of power grid considering access of composite energy storage power stations[J]. Acta Energiae Solaris Sinica, 2022, 43(10): 400-408.
doi: 10.19912/j.0254-0096.tynxb.2021-0444
|
[21] |
陈锦鹏, 胡志坚, 陈嘉滨, 等. 考虑阶梯式碳交易与供需灵活双响应的综合能源系统优化调度[J]. 高电压技术, 2021, 47(9):3094-3106.
|
|
CHEN Jinpeng, HU Zhijian, CHEN Jiabin, et al. Optimal dispatch of integrated energy system considering ladder-type carbon trading and flexible double response of supply and demand[J]. High Voltage Engineering, 2021, 47(9): 3094-3106.
|
[22] |
任千悦, 贾捷, 田琦. 热泵技术在矿井余热回收中的应用现状及发展方向[J]. 区域供热, 2023(1):102-108.
|
|
REN Qianyue, JIA Jie, TIAN Qi. Status and development direction of heat pump technology in mine waste heat recovery[J]. District Heating, 2023(1): 102-108.
|
[23] |
童家麟, 吴瑞康, 茅建波, 等. 燃煤机组深度调峰瓶颈改善及耦合调峰技术研究[J]. 综合智慧能源, 2022, 44(4):43-50.
doi: 10.3969/j.issn.2097-0706.2022.04.006
|
|
TONG Jialin, WU Ruikang, MAO Jianbo, et al. Improvement of deep peak regulation and comprehensive peak shaving technologies for coal-fired units[J]. Integrated Intelligent Energy, 2022, 44(4): 43-50.
doi: 10.3969/j.issn.2097-0706.2022.04.006
|
[24] |
LU Q, GUO Q S, ZENG W. Optimal dispatch of community integrated energy system based on Stackelberg game and integrated demand response under carbon trading mechanism[J]. Applied Thermal Engineering, 2023, 219: 119508.
|
[25] |
FINSTAD J, DAHL ANDERSEN A D. Multi-sector technology diffusion in urgent net-zero transitions: Niche splintering in carbon capture technology[J]. Technological Forecasting and Social Change, 2023, 194: 122696.
|
[26] |
张涛, 郭玥彤, 李逸鸿, 等. 计及电气热综合需求响应的区域综合能源系统优化调度[J]. 电力系统保护与控制, 2021, 49(1):52-61.
|
|
ZHANG Tao, GUO Yuetong, LI Yihong, et al. Optimization scheduling of regional integrated energy systems based on electric-thermal-gas integrated demand response[J]. Power System Protection and Control, 2021, 49(1): 52-61.
|
[27] |
初壮, 赵蕾, 孙健浩, 等. 考虑热能动态平衡的含氢储能的综合能源系统热电优化[J]. 电力系统保护与控制, 2023, 51(3):1-12.
|
|
CHU Zhuang, ZHAO Lei, SUN Jianhao, et al. Thermoelectric optimization of an integrated energy system with hydrogen energy storage considering thermal energy dynamic balance[J]. Power System Protection and Control, 2023, 51(3): 1-12.
|
[28] |
邵伟强, 梁海峰, 张锡彦, 等. 水合物法提纯低浓度煤层气的研究进展[J]. 化工进展, 2021, 40(6):3143-3150.
doi: 10.16085/j.issn.1000-6613.2020-1344
|
|
SHAO Weiqiang, LIANG Haifeng, ZHANG Xiyan, et al. Research progress of purification of low-concentration coal-bed methane via hydrate method[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3143-3150.
doi: 10.16085/j.issn.1000-6613.2020-1344
|
[29] |
缪蔡然, 朱姚培, 王琦. 考虑气热惯性的综合能源系统优化配置研究[J]. 综合智慧能源, 2023, 45(10):44-52.
doi: 10.3969/j.issn.2097-0706.2023.10.006
|
|
MIAO Cairan, ZHU Yaopei, WANG Qi. Optimal configuration of integrated energy systems considering gas and thermal inertia[J]. Integrated Intelligent Energy, 2023, 45(10): 44-52.
doi: 10.3969/j.issn.2097-0706.2023.10.006
|
[30] |
WANG Y C, JIN J F, LIU H F, et al. The optimal emergency demand response (EDR) mechanism for rural power grid considering consumers' satisfaction[J]. Energy Reports, 2021, 7(S1): 118-125.
|
[31] |
尹宇晨, 刘宇杭, 马愿谦, 等. 基于Transformer算法的园区综合能源需求预测[J]. 综合智慧能源, 2023, 45(10):61-69.
doi: 10.3969/j.issn.2097-0706.2023.10.008
|
|
YIN Yuchen, LIU Yuhang, MA Yuanqian, et al. Integrated energy demand forecasting for the park based on the Transformer algorithm[J]. Integrated Intelligent Energy, 2023, 45(10): 61-69.
doi: 10.3969/j.issn.2097-0706.2023.10.008
|