综合智慧能源 ›› 2025, Vol. 47 ›› Issue (3): 73-83.doi: 10.3969/j.issn.2097-0706.2025.03.007

• 负荷建模与潜力分析 • 上一篇    下一篇

考虑综合需求响应的矿区综合能源系统日内多时间尺度滚动优化调度

江美慧1,2(), 许镇江1, 牛统科1, 朱虹谕1,2,*(), 李想1   

  1. 1.广西大学 电气工程学院,南宁 530004
    2.内蒙古工业大学 新能源学院,内蒙古 鄂尔多斯 017010
  • 收稿日期:2024-04-30 修回日期:2024-08-04 接受日期:2024-09-29 出版日期:2025-03-25
  • 通讯作者: *朱虹谕(1996),女,讲师,博士,从事多能耦合系统、需求响应等方面的研究,hongyuzhu_cq@yeah.net
  • 作者简介:江美慧(1994),女,讲师,博士,从事综合能源、风光储一体化技术等方面的研究,meihuijiang@yeah.net
  • 基金资助:
    国家自然科学基金项目(52107083);广西科技重大专项(AA22068071)

Intra-day multi-time scale rolling optimization scheduling of mine integrated energy system considering integrated demand response

JIANG Meihui1,2(), XU Zhenjiang1, NIU Tongke1, ZHU Hongyu1,2,*(), LI Xiang1   

  1. 1. School of Electrical Engineering, Guangxi University, Nanning 530004, China
    2. School of Renewable Energy, Inner Mongolia University of Technology, Ordos 017010, China
  • Received:2024-04-30 Revised:2024-08-04 Accepted:2024-09-29 Published:2025-03-25
  • Supported by:
    National Natural Science Foundation of China(52107083);Guangxi Science and Technology Major Program(AA22068071)

摘要:

为应对目前矿区能耗大、资源利用率低、源荷不确定性强等问题,建立了一个基于煤矿的矿区综合能源系统,引入需求响应机制和多时间尺度的滚动优化策略,以提高系统的经济运行效益。为了最大限度利用矿区各类负荷的可调度性和灵活性,针对需求侧的电力和热能负荷,构建了一个精细化的综合需求响应模型;融合多时间尺度优化策略,构建了日内多时间尺度的优化模型,该模型旨在最小化与日前计划的偏差,设定每个求解周期为4 h并每隔15 min执行一次优化操作,通过这种滚动优化策略对日前调度计划进行有效修正;通过不同的算例模拟和比较分析,证明了综合需求响应和多时间尺度优化策略在提升矿区综合能源系统低碳运行和应对不确定性方面的有效性。

关键词: 矿区综合能源系统, 风电消纳, 综合需求响应, 多时间尺度, 滚动优化, 低碳运行

Abstract:

To address the challenges of high energy consumption, low resource utilization, and significant uncertainty in source-load demand in mining areas, this study established a mine integrated energy system (MIES) based on coal mines. The system incorporated a demand response mechanism and a multi-time scale rolling optimization strategy to enhance economic operational efficiency. Firstly, a refined integrated demand response model was constructed for power and thermal loads on the demand side to maximize the schedulability and flexibility of various loads in mining areas. Subsequently, integrating a multi-time scale optimization strategy, an intra-day multi-time scale optimization model was developed, aiming to minimize deviations from the day-ahead plan. The model set each optimization cycle to 4 h and performed optimization every 15 min, using this rolling optimization strategy to effectively adjust the day-ahead scheduling plan. Finally, simulations and comparative analyses of different case studies demonstrated the effectiveness of the integrated demand response and multi-time scale optimization strategies in promoting low-carbon operation and managing uncertainty in MIES.

Key words: mine integrated energy system, wind power accommodation, integrated demand response, multi-time scale, rolling optimization, low-carbon operation

中图分类号: