综合智慧能源 ›› 2026, Vol. 48 ›› Issue (1): 1-12.doi: 10.3969/j.issn.2097-0706.2026.01.001

• AI 驱动的新能源功率预测与优化 •    下一篇

基于Res-MobileCom并行网络的光伏发电功率等级分类

殷林飞(), 周扬钢()   

  1. 广西大学 电气工程学院,南宁 530004
  • 收稿日期:2025-07-28 修回日期:2025-09-23 出版日期:2026-01-25
  • 作者简介:殷林飞(1990),男,副教授,博士,从事机组组合、经济调度、自动发电控制、人工智能方法等方面的研究, yinlinfei@gxu.edu.cn
    周扬钢(2002),男,从事深度学习方面的研究,ljzzgyz@qq.com
  • 基金资助:
    国家自然科学基金项目(62463001)

Photovoltaic power level classification based on Res-MobileCom parallel network

YIN Linfei(), ZHOU Yanggang()   

  1. School of Electrical Engineering,Guangxi University,Nanning 530004,China
  • Received:2025-07-28 Revised:2025-09-23 Published:2026-01-25
  • Supported by:
    National Natural Science Foundation of China(62463001)

摘要:

为了提高光伏发电功率等级分类准确性以适应行业要求,提出了一种基于Res-MobileCom并行网络的分类模型。在数据处理中使用去归一化的双线性插值法最大限度保留数据特征,然后通过简化残差网络(ResNet)和用于移动视觉的高效卷积神经网络(MobileNet)结构并行训练后将其输出联合输入信道估计-信号检测网络(ComNet)中进一步提取数据特征,最终得到分类结果。试验结果表明:相比于常见的深度学习模型,Res-MobileCom模型保持了ResNet和MobileNet的特征提取能力和轻量性,模型具备较好的平衡性和泛化能力;采用去归一化双线性插值法和进一步提取数据特征的ComNet后,模型准确率提高了10百分点以上,为提高光伏发电功率等级分类模型的准确率提供了新的方法和思路。未来工作将围绕稳定性优化、跨任务验证及工程化部署展开。

关键词: 光伏发电功率等级分类, 深度学习, 残差网络, 残差网络, 移动网络, ComNet, 轻量化, 平行网络

Abstract:

To enhance the accuracy of photovoltaic power level classification to meet industry requirements, a classification model based on a Res-MobileCom parallel network was proposed. In data preprocessing, denormalized bilinear interpolation was used to maximize the preservation of data features. Subsequently, through parallel training of simplified residual network(ResNet) and efficient convolutional neural networks for mobile vision(MobileNet), their outputs were jointly fed into the channel estimation-signal detection network(ComNet) for further data feature extraction, ultimately obtaining the classification results. The experimental results demonstrated that compared to common deep learning models, the Res-MobileCom model retained the feature extraction capability and lightweight nature of ResNet and MobileNet, exhibiting good balance and generalization ability. By using the denormalized bilinear interpolation method and the ComNet for further data feature extraction, the model accuracy improved by more than 10 percentage points, providing a novel approach and idea for improving the accuracy of photovoltaic power level classification models. Future work will focus on stability optimization, cross-task validation, and engineering deployment.

Key words: photovoltaic power level classification, deep learning, residual network, mobile network, ComNet, lightweight, parallel network

中图分类号: