综合智慧能源 ›› 2023, Vol. 45 ›› Issue (3): 24-33.doi: 10.3969/j.issn.2097-0706.2023.03.004
收稿日期:
2022-11-09
修回日期:
2023-02-22
出版日期:
2023-03-25
通讯作者:
陆明璇(1996),女,工程师,在读博士研究生,从事电力规划等方面的研究,2870525679@qq.com。作者简介:
李华(1986),女,高级工程师,硕士,从事电力规划等方面的研究,dwghlih@163.com
LI Hua1(), LU Mingxuan1,2,*(
), TONG Yongji3, ZHONG Chongfei1
Received:
2022-11-09
Revised:
2023-02-22
Published:
2023-03-25
摘要:
“双碳”目标下,含高比例新能源的新型电力系统不断朝着信息化、智能化的方向发展,相位测量单元、广域计量系统和数据采集与监控逐渐普及,系统的安全稳定运行面临巨大挑战,态势感知技术是实现电力系统运行可观和可控的重要途径。介绍了态势感知技术“察觉-理解-预测”架构在电力系统中的映射及方法分类,分析了新型电力系统安全稳定运行面临的新挑战,总结了态势感知技术在源荷预测、安全稳定、实时运行状态分析中的研究现状、应用及实施效果,以期为后续研究提供借鉴。
中图分类号:
李华, 陆明璇, 佟永吉, 仲崇飞. 态势感知技术在新型电力系统运行中的应用[J]. 综合智慧能源, 2023, 45(3): 24-33.
LI Hua, LU Mingxuan, TONG Yongji, ZHONG Chongfei. Application of situational awareness technology in the safe and stable operation of new power systems[J]. Integrated Intelligent Energy, 2023, 45(3): 24-33.
[1] | 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8):2806-2819. |
ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42(8): 2806-2819. | |
[2] |
SAADOU A, CHEN J. Optimizing situational awareness in disaster response networks[J]. IEEE Access, 2018, 6: 24625-24638.
doi: 10.1109/ACCESS.2018.2831448 |
[3] | ZHANG T, LIU S, QIU W, et al. KPI-based real-time situational awareness for power systems with a high proportion of renewable energy sources[J]. CSEE Journal of Power and Energy Systems, 2022, 8(4):1060-1073. |
[4] |
GARCIA G L, STEVAHN L. Situational awareness and interpersonal competence as evaluator competencies[J]. American Journal of Evaluation, 2020, 41(1): 107-124.
doi: 10.1177/1098214018814941 |
[5] | 刘晟源, 林振智, 李金城, 等. 电力系统态势感知技术研究综述与展望[J]. 电力系统自动化, 2020, 44(3):229-239. |
LIU Shengyuan, LIN Zhenzhi, LI Jincheng, et al. Review and prospect of situation awareness technologies of power system[J]. Automation of Electric Power Systems, 2020, 44(3): 229-239. | |
[6] | 葛磊蛟, 李元良, 陈艳波, 等. 智能配电网态势感知关键技术及实施效果评价[J]. 高电压技术, 2021, 47(7): 2269-2280. |
GE Leijiao, LI Yuanliang, CHEN Yanbo, et al. Key technologies of situation awareness and implementation effectiveness evaluation in smart distribution network[J]. High Voltage Engineering, 2021, 47(7): 2269-2280. | |
[7] | 王守相, 梁栋, 葛磊蛟. 智能配电网态势感知和态势利导关键技术[J]. 电力系统自动化, 2016, 40(12): 2-8. |
WANG Shouxiang, LIANG Dong, GE Leijiao, et al. Key technologies of situation awareness and orientation for smart distribution systems[J]. Automation of Electric Power Systems, 2016, 40(12): 2-8. | |
[8] | 杨胜春, 汤必强, 姚建国, 等. 基于态势感知的电网自动智能调度架构及关键技术[J]. 电网技术, 2014, 38(1): 33-39. |
YANG Shengchun, TANG Biqiang, YAO Jianguo, et al. Architecture and key technologies for situational awareness based automatic intelligent dispatching of power grid[J]. Power System Technology, 2014, 38(1): 33-39. | |
[9] | 李大虎, 袁志军, 何俊, 等. 面向台风气象的电网运行风险态势感知方法[J]. 高电压技术, 2021, 47(7):2301-2313. |
LI Dahu, YUAN Zhijun, HE Jun, et al. Situation awareness method of power grid operation risk under typhoon weather[J]. High Voltage Engineering, 2021, 47(7): 2301-2313. | |
[10] | 何俊, 于华, 邓长虹, 等. 极端天气下基于态势感知的重点区域电网负荷供电保障策略[J]. 高电压技术, 2022, 48(4): 1277-1285. |
HE Jun, YU Hua, DENG Changhong, et al. Power supply guarantee strategy for key regional power grid load based on situation awareness in extreme weather[J]. High Voltage Engineering, 2022, 48(4): 1277-1285. | |
[11] | 刘鑫蕊, 李欣, 孙秋野, 等. 考虑冰灾环境的配电网态势感知和薄弱环节辨识方法[J]. 电网技术, 2019, 43(7): 2243-2252. |
LIU Xinrui, LI Xin, SUN Qiuye, et al. A new method for situation awareness and weakness identification of distribution network considering ice disaster[J]. Power System Technology, 2019, 43(7): 2243-2252. | |
[12] | 陆继翔, 张琪培, 杨志宏, 等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137. |
LU Jixiang, ZHANG Qipei, YANG Zhihong, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137. | |
[13] | 陈梓行, 金涛, 郑熙东, 等. 基于新型日期映射法和ISGU混合模型的短期电力负荷预测[J]. 电力系统保护与控制, 2022, 50(15): 72-80. |
CHEN Zixing, JIN Tao, ZHENG Xidong, et al. Short-term power load forecasting based on a new date mapping method and an ISGU hybrid model[J]. Power System Protection and Control, 2022, 50(15): 72-80. | |
[14] | 许鹏, 孙毅, 张健, 等. 基于人工智能代理的负荷态势感知及调控方法[J]. 电力系统自动化, 2019, 43(3): 178-186. |
XU Peng, SUN Yi, ZHANG Jian, et al. Load situation awareness and control method based on artificial intelligence agent[J]. Automation of Electric Power Systems, 2019, 43(3): 178-186. | |
[15] | 殷豪, 董朕, 孟安波. 基于结合混沌纵横交叉的粒子群算法优化极限学习机的短期负荷预测[J]. 计算机应用研究, 2018, 35(7):2088-2091. |
YIN Hao, DONG Zhen, MENG Anbo. Short-term load forecasting based on extreme learning machine optimized by particle swarm optimization integrated with chaotic crisscross optimization[J]. Application Research of Computers, 2018, 35(7):2088-2091. | |
[16] | 孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47(4):1129-1143. |
SUN Rongfu, ZHANG Tao, HE Qing, et al. Review on key technologies and applications in wind power forecasting[J]. High Voltage Engineering, 2021, 47(4):1129-1143. | |
[17] | 韩自奋, 景乾明, 张彦凯, 等. 风电预测方法与新趋势综述[J]. 电力系统保护与控制, 2019, 47(24):178-187. |
HAN Zifen, JING Qianming, ZHANG Yankai, et al. Review of wind power forecasting methods and new trends[J]. Power System Protection and Control, 2019, 47(24):178-187. | |
[18] | 杨茂, 张罗宾. 基于数据驱动的超短期风电功率预测综述[J]. 电力系统保护与控制, 2019, 47(13):171-186. |
YANG Mao, ZHANG Luobin. Review on ultra-short term wind power forecasting based on data-driven approach[J]. Power System Protection and Control, 2019, 47(13): 171-186. | |
[19] | 苗长新, 王霞, 李昊, 等. 基于数值天气预报风速误差修正的风电功率日前预测[J]. 电网技术, 2022, 46(9):3455-3464. |
MIAO Changxin, WANG Xia, LI Hao, et al. Day-ahead prediction of wind power based on NWP wind speed error correction[J]. Power System Technology, 2022, 46(9): 3455-3464. | |
[20] | 杨锡运, 张艳峰, 叶天泽, 等. 基于朴素贝叶斯的风电功率组合概率区间预测[J]. 高电压技术, 2020, 46(3):1099-1108. |
YANG Xiyun, ZHANG Yanfeng, YE Tianze, et al. Prediction of combination probability interval of wind power based on naive Bayes[J]. High Voltage Engineering, 2020, 46(3): 1099-1108. | |
[21] | 黎静华, 黄玉金, 黄乾. 基于改进混沌时间序列的风电功率区间预测方法[J]. 电力自动化设备, 2019, 39(5):53-58. |
LI Jinghua, HUANG Yujin, HUANG Qian. Interval prediction method of wind power based on improved chaotic time series[J]. Electric Power Automation Equipment, 2019, 39(5): 53-58. | |
[22] | 毕贵红, 赵鑫, 陈臣鹏, 等. 基于多通道输入和PCNN-BiLSTM的光伏发电功率超短期预测[J]. 电网技术, 2022, 46(9):3463-3476. |
BI Guihong, ZHAO Xin, CHEN Chenpeng, et al. Ultra-short-term prediction of photovoltaic power generation based on multi-channel input and PCNN-BiLSTM[J]. Power System Technology, 2022, 46(9):3463-3476. | |
[23] |
谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43(8):75-81.
doi: 10.19912/j.0254-0096.tynxb.2021-0005 |
TAN Haiwang, YANG Qiliang, XING Jianchun, et al. Photovoltaic power prediction based on combined XGBoost-LSTM model[J]. Acta Energiae Solaris Sinica, 2022, 43(8): 75-81.
doi: 10.19912/j.0254-0096.tynxb.2021-0005 |
|
[24] |
郑惠萍, 曾鹏, 刘新元, 等. 基于误差前馈预测的多时空尺度风电集群有功功率分层控制策略[J]. 电力建设, 2020, 41(8):120-128.
doi: 10.12204/j.issn.1000-7229.2020.08.014 |
ZHENG Huiping, ZENG Peng, LIU Xinyuan, et al. Active power layered control strategy based on error feedforward prediction for multiple temporal and spatial scales wind power cluster[J]. Electric Power Construction, 2020, 41(8): 120-128.
doi: 10.12204/j.issn.1000-7229.2020.08.014 |
|
[25] | 唐景星, 孙闻, 李晓明, 等. 基于WAMS的发电机组动态无功控制策略[J]. 南方电网技术, 2015, 9(7):82-87. |
TANG Jingxing, SUN Wen, LI Xiaoming, et al. Dynamic reactive power control strategy of generators based on WAMS[J]. Southern Power System Technology, 2015, 9(7): 82-87. | |
[26] |
REN Chao, XU Yan, ZHANG Yuchen, et al. A hybrid randomized learning system for temporal-adaptive voltage stability assessment of power systems[J]. IEEE Transactions on Industrial Informatics, 2019, 16(6): 3672-3684.
doi: 10.1109/TII.9424 |
[27] |
RIZVI S M H, SADANANDAN S K, SRIVASTAVA A K. Data-driven short-term voltage stability assessment using convolutional neural networks considering data anomalies and localization[J]. IEEE Access, 2021, 9:128345-128358.
doi: 10.1109/ACCESS.2021.3107248 |
[28] | 刘浩然, 任惠, 郑至斌, 等. 基于改进深度残差网络的电力系统暂态电压稳定评估[J/OL]. 现代电力:1-11[2022-10-22].10.13335/j.1000-3673.pst.2021.2471. |
LIU Haoran, REN Hui, ZHENG Zhibin, et al. Transient voltage stability assessment of power system based on improved deep residual network[J/OL]. Modern Electric Power:1-11[2022-10-22].10.13335/j.1000-3673.pst.2021.2471. | |
[29] | 曾琦, 李兴源, 冯明, 等. 基于广域测量系统的多馈入直流低压限流单元的协调控制方法[J]. 高电压技术, 2017, 43(4):1168-1174. |
ZENG Qi, LI Xingyuan, FENG Ming, et al. Coordinated control method of VDCOLs in MIDC system based on the wide-area measurement system[J]. High Voltage Engineering, 2017, 43(4): 1168-1174. | |
[30] | 包晓晖, 高厚磊. 一种基于FFT谱分析的水电机组相干性判定新方法[J]. 水电能源科学, 2016, 34(4):143-145. |
BAO Xiaohui, GAO Houlei. A new method based FFT spectrum analysis for predicting hydroelectric generating set coherence[J]. Water Resources and Power, 2016, 34(4): 143-145. | |
[31] |
AMIN M, AL-DURRA A, ELMANNAI W. Experimental validation of high-performance HIL-based real-time PMU model for WAMS[J]. IEEE Transactions on Industry Applications, 2020, 56(3): 2382-2392.
doi: 10.1109/TIA.28 |
[32] |
BASHIAN A, ASSILI M, ANVARI-MOGHADDAM A. A security-based observability method for optimal PMU-sensor placement in WAMS[J]. International Journal of Electrical Power & Energy Systems, 2020, 121: 106157.
doi: 10.1016/j.ijepes.2020.106157 |
[33] | 王艳松, 高鑫, 胡彩娥, 等. 基于核主成分分析和AP聚类算法的电力系统态势感知技术[J]. 电测与仪表, 2022, 59(1):25-36. |
WANG Yansong, GAO Xin, HU Cai'e, et al. Power system situation awareness technology based on kernel principal component analysis and AP clustering algorithm[J]. Electrical Measurement & Instrumentation, 2022, 59(1):25-36. | |
[34] | 张怡, 张恒旭, 李常刚, 等. 深度学习在电力系统频率分析与控制中的应用综述[J]. 中国电机工程学报, 2021, 41(10):3392-3406,3665. |
ZHANG Yi, ZHANG Hengxu, LI Changgang, et al. Review on deep learning applications in power system frequency analysis and control[J]. Proceedings of the CSEE, 2021, 41(10):3392-3406,3665. | |
[35] | 刘克天, 王晓茹. 基于广域量测数据的电力系统动态频率分析方法[J]. 电网技术, 2013, 37(8): 2201-2206. |
LIU Ketian, WANG Xiaoru. A wide-area measurement data based method for power system dynamic frequency analysis[J]. Power System Technology, 2013, 37(8): 2201-2206. | |
[36] | 刘克天, 王晓茹, 薄其滨. 基于广域量测的电力系统扰动后最低频率预测[J]. 中国电机工程学报, 2014, 34(13): 2188-2195. |
LIU Ketian, WANG Xiaoru, BO Qibin. Minimum frequency prediction of power system after disturbance based on the WAMS data[J]. Proceedings of the CSEE, 2014, 34(13): 2188-2195. | |
[37] | 仉怡超, 闻达, 王晓茹, 等. 基于深度置信网络的电力系统扰动后频率曲线预测[J]. 中国电机工程学报, 2019, 39(17):5095-5104. |
ZHANG Yichao, WEN Da, WANG Xiaoru, et al. A method of frequency curve prediction based on deep belief network of post-disturbance power system[J]. Proceedings of the CSEE, 2019, 39(17):5095-5104. | |
[38] | 刘中建, 周明, 李昭辉, 等. 高比例新能源电力系统的惯量控制技术与惯量需求评估综述[J]. 电力自动化设备, 2021, 41(12): 1-11,53. |
LIU Zhongjian, ZHOU Ming, LI Zhaohui, et al. Review of inertia control technology and requirement evaluation in renewable-dominant power system[J]. Electric Power Automation Equipment, 2021, 41(12): 1-11,53. | |
[39] | 卢姬, 常俊晓, 刘瑞, 等. 考虑电动汽车集群的互联电网负荷频率分散预测控制[J]. 电测与仪表, 2021, 58(9):96-102. |
LU Ji, CHANG Junxiao, LIU Rui, et al. Decentralized predictive control of load frequency for interconnected power grid considering electric vehicle clusters[J]. Electrical Measurement & Instrumentation, 2021, 58(9): 96-102. | |
[40] |
XIE X R, ZHAN Y, LIU H K, et al. Improved synchro phasor measurement to capture sub/super-synchronous dynamics in power systems with renewable generation[J]. IET Renewable Power Generation, 2019, 13(1):49-56.
doi: 10.1049/rpg2.v13.1 |
[41] | 冯双, 崔昊, 吴熙, 等. 基于对角化 LDPC 压缩感知和k-近邻算法的广域系统宽频振荡监测方法[J]. 电网技术, 2021, 45(8):3025-3033. |
FENG Shuang, CUI Hao, WU Xi, et al. Monitoring method of wide-band oscillation based on compressed sensing of diagonalizable LDPC and k-nearest neighbour algorithm[J]. Power System Technology, 2021, 45(8): 3025-3033. | |
[42] |
BANNA H U, SOLANKI S K, SOLANKI J. Data-driven disturbance source identification for power system oscillations using credibility search ensemble learning[J]. IET Smart Grid, 2019, 2(2):293-300.
doi: 10.1049/stg2.v2.2 |
[43] |
GU Jiu, XIE Da, GU Chenghong, et al. Location of low-frequency oscillation sources using improved D-S evidence theory[J]. International Journal of Electrical Power & Energy Systems, 2021, 125:106444.
doi: 10.1016/j.ijepes.2020.106444 |
[44] | 冯双, 陈佳宁, 汤奕, 等. 基于 SPWVD 图像和深度迁移学习的强迫振荡源定位方法[J]. 电力系统自动化, 2020, 44(17):78-87. |
FENG Shuang, CHEN Jianing, TANG Yi. Location method of forced oscillation source based on SPWVD image and deep transfer learning[J]. Automation of Electric Power Systems, 2020, 44(17):78-87. | |
[45] | 潘晓杰, 张立伟, 张文朝, 等. 基于飞蛾扑火优化算法的多运行方式电力系统稳定器参数协调优化方法[J]. 电网技术, 2020, 44(8):3038-3046. |
PAN Xiaojie, ZHANG Liwei, ZHANG Wenchao, et al. Multi-operation mode PSS parameter coordination optimization method based on moth-flame optimization algorithm[J]. Power System Technology, 2020, 44(8):3038-3046. | |
[46] | 聂永辉, 张鹏宇, 蔡国伟, 等. 考虑时滞的电力系统广域阻尼控制优化设计[J]. 中国电机工程学报, 2020, 40(12):3786-3795. |
NIE Yonghui, ZHANG Pengyu, CAI Guowei, et al. Optimization design of wide area damping control for power systems considering time delay[J]. Proceedings of the CSEE, 2020, 40(12):3786-3795. | |
[47] |
BIAN X Y, GENG Yan, LO K L, et al. Coordination of PSSs and SVC damping controller to improve probabilistic small-signal stability of power system with wind farm integration[J]. IEEE Transactions on Power Systems, 2016, 31(3):2371-2382.
doi: 10.1109/TPWRS.2015.2458980 |
[48] | 马宁宁, 谢小荣, 亢朋朋, 等. 高比例风电并网系统次同步振荡的广域监测与分析[J]. 中国电机工程学报, 2021, 41(1):65-74. |
MA Ningning, XIE Xiaorong, KANG Pengpeng, et al. Wide-area monitoring and analysis of subsynchronous oscillation in power systems with high-penetration of wind power[J]. Proceedings of the CSEE, 2021, 41(1):65-74. | |
[49] |
CHEN S, CHEN Q, XIA Q, et al. Steady-state security assessment method based on distance to security region boundaries[J]. IET Generation Transmission & Distribution, 2013, 7(3):288-297.
doi: 10.1049/gtd2.v7.3 |
[50] | CHEN S, CHEN Q, XIA Q, et al. Active boundary identifying technique for steady-state security distance assessment[C]// 2013 IEEE Power and Energy Society General Meeting.Vancouver, 2013:1-5. |
[51] | 陈思捷, 陈启鑫, 夏清. 静态安全距离:概念,模型和意义[J]. 中国电机工程学报, 2015, 35(3): 600-608. |
CHEN Sijie, CHEN Qixin, XIA Qing. Steady-state security distance: Concept, model and meaning[J]. Proceedings of the CSEE, 2015, 35(3): 600-608. | |
[52] |
XIAO J, ZHANG B, LUO F. Distribution network security situation awareness method based on security distance[J]. IEEE Access, 2019, 7: 37855-37864.
doi: 10.1109/Access.6287639 |
[53] | 吴英俊. 一种基于超平面的电力系统实用近似静态安全域及其求解方法[J]. 电工技术学报, 2014, 29(S1):374-383. |
WU Yingjun. Nonlinear speed control for a permanent magnet synchronous generator and the boost-chopper converter[J]. Transactions of China Electrotechnical Society, 2014, 29(S1): 374-383. | |
[54] | 顾雪平, 张尚, 王涛, 等. 安全域视角下的有功安全校正优化控制方法[J]. 电力系统自动化, 2017, 41(18):17-24. |
GU Xueping, ZHANG Shang, WANG Tao, et al. Optimization control strategy for active power correction from perspective of security region[J]. Automation of Electric Power Systems, 2017, 41(18):17-24. | |
[55] |
葛磊蛟, 崔庆雪, 李明玮, 等. 面向低碳经济运行的新型电力系统态势感知技术综述[J]. 综合智慧能源, 2023, 45(1): 1-13.
doi: 10.3969/j.issn.2097-0706.2023.01.001 |
GE Leijiao, CUI Qingxue, LI Mingwei, et al. Review on situational awareness technology in a low-carbon oriented new power system[J]. Integrated Intelligent Energy, 2023, 45(1): 1-13.
doi: 10.3969/j.issn.2097-0706.2023.01.001 |
|
[56] | 于群, 李浩, 屈玉清. 基于深度神经网络和内外部因素的大电网安全态势感知研究[J]. 电测与仪表, 2022, 59(2): 16-23,67. |
YU Qun, LI Hao, QU Yuqing. Research on security situation awareness of large power grid based on deep neural network and internal and external factors[J]. Electrical Measurement and Instrumentation, 2022, 59(2): 16-23,67. | |
[57] | 金明辉. 基于状态评估的智能配电网态势感知方法研究[J]. 电网与清洁能源, 2020, 36(5): 69-74. |
JIN Minghui. Research on situational sensing method of intelligent distribution network based on state assessments[J]. Power System and Clean Energy, 2020, 36(5):69-74. | |
[58] | 李峰, 王珂, 徐鹏, 等. 基于多层次指标体系的电网综合态势感知体系架构设计[J]. 电网与清洁能源, 2014, 30(12): 33-40. |
LI Feng, WANG Ke, XU Peng, et al. Architecture of integrated situational awareness to power grid based on multi-level index system[J]. Power System and Clean Energy, 2014, 30(12): 33-40. |
[1] | 李菲菲, 徐绘薇, 崔金栋. 基于STIRPAT模型的吉林省石化行业碳排放影响因素研究[J]. 综合智慧能源, 2024, 46(8): 12-19. |
[2] | 李菲菲, 王舒泓, 崔金栋. 全生命周期视角下汽车产业碳排放影响因素的研究——以吉林省为例[J]. 综合智慧能源, 2024, 46(8): 20-27. |
[3] | 王泽宁, 李文中, 李东辉, 徐泰山, 俞俊. 基于软件定义的新型电力系统分层自治电力平衡模式研究[J]. 综合智慧能源, 2024, 46(7): 1-11. |
[4] | 何方波, 裴力耕, 郑睿, 范康健, 张晓曼, 李更丰. “源网荷储”协同助力陕西省新型电力系统建设[J]. 综合智慧能源, 2024, 46(7): 40-46. |
[5] | 黄晓凡, 李佳瑞, 刘晖, 汤效平, 王兹尧, 王彤. 梯次利用动力电池储能系统综合效益分析[J]. 综合智慧能源, 2024, 46(7): 63-73. |
[6] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[7] | 李明扬, 窦梦园. 基于强化学习的含电动汽车虚拟电厂优化调度[J]. 综合智慧能源, 2024, 46(6): 27-34. |
[8] | 郁海彬, 卢闻州, 唐亮, 张煜晨, 邹翔宇, 姜玉靓, 刘嘉宝. 考虑风险偏好的多主体虚拟电厂经济调度与收益分配策略[J]. 综合智慧能源, 2024, 46(6): 66-77. |
[9] | 王亮, 邓松. 面向新型电力系统的异常数据检测方法[J]. 综合智慧能源, 2024, 46(5): 12-19. |
[10] | 王永利, 王亚楠, 马子奔, 秦雨萌, 陈锡昌, 滕越. 面向区块链技术应用的能源交易系统效果评价[J]. 综合智慧能源, 2024, 46(4): 78-84. |
[11] | 苏盼盼, 王学涛, 邢利利, 李浩杰, 刘梦杰. 生物质预处理催化热解制备液体燃料研究进展[J]. 综合智慧能源, 2024, 46(3): 1-11. |
[12] | 孙健, 张云帆, 蔡潇龙, 刘鼎群. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19. |
[13] | 丁乐言, 柯松, 杨军, 施兴烨. 基于自适应控制参数整定的虚拟同步发电机控制策略[J]. 综合智慧能源, 2024, 46(3): 35-44. |
[14] | 苑曙光, 张瑜婷, 王峰, 苑广震. 蒙西地区规模化储能商业运行模式及风险分析[J]. 综合智慧能源, 2024, 46(3): 63-71. |
[15] | 魏夕凯, 谭效时, 林明, 程俊杰, 向可祺, 丁书欣. 2005—2035年全国电网碳排放因子的计算与预测[J]. 综合智慧能源, 2024, 46(3): 72-78. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||