综合智慧能源 ›› 2023, Vol. 45 ›› Issue (5): 1-12.doi: 10.3969/j.issn.2097-0706.2023.05.001
• 生物质材料应用 • 下一篇
收稿日期:
2022-10-19
修回日期:
2023-01-28
出版日期:
2023-05-25
通讯作者:
*胡勋(1983),男,教授,博士生导师,博士,从事固体废弃物资源化利用、生物质基碳材料制备和应用、多相催化(水蒸气重整制氢、加氢和酸催化)等方面的研究,xun.hu@outlook.com。作者简介:
周舒心(1994),女,在读硕士研究生,从事固体废弃生物衍生碳材料制备及超级电容器等方面的研究,zhoushuxin2020@126.com;基金资助:
ZHOU Shuxin(), FAN Huailin(
), HU Xun*(
)
Received:
2022-10-19
Revised:
2023-01-28
Published:
2023-05-25
Supported by:
摘要:
生物质材料具备价格低廉、收集方便、芳香度和含碳量高等优良特点,是实现工业化规模制备新型碳材料的重要碳源之一。生物质材料和功能材料绿色可持续高效转化是实现碳中和的关键。多孔碳材料由于高比表面积、丰富合理的多孔结构、良好的导电性和稳定性,在能量储存方面具有巨大潜力。归纳整理了生物质衍生多孔碳材料的国内外最新研究进展,总结了生物质基多孔碳材料的分类和制备过程,重点阐述了其作为电极材料的研究进展。针对生物质基多孔碳材料制备工艺提出了合理的研究策略,给出了精准利用发展生物质自身优势制备功能化碳材料的未来研究方向。
中图分类号:
周舒心, 范怀林, 胡勋. 生物质基碳材料制备及其在超级电容器电极材料中的应用[J]. 综合智慧能源, 2023, 45(5): 1-12.
ZHOU Shuxin, FAN Huailin, HU Xun. Preparation of biomass-based carbon materials and its application as electrodes in supercapacitors[J]. Integrated Intelligent Energy, 2023, 45(5): 1-12.
表1
生物质材料的电化学应用
原料 | 比表面积/(m2·g-1) | 应用 | 参考文献 |
---|---|---|---|
豆渣 | 1 276.0 | 超级电容器:281.4 F/g (0.5 A/g) | [ |
荞麦粉 | 154.0 | 超级电容器:767.0 F/g (1.0 A/g) | [ |
脱脂棉 | 1 523.0 | 钠离子储能设备:1 390.1 mA·h/g (0.2 A/g) | [ |
木质纤维素 | 1 299.0 | 钠离子储能设备:233.8 F/g | [ |
蚕砂 | 496.0 | 钠离子电池:331.7 mA·h/g (20.0 mA/g) | [ |
海带 | 1 986.0 | 超级电容器:381.0 F/g (1.0 A/g) | [ |
明胶 | 3 099.0 | 锌空气电池:154.2 mA/cm (1.0 V) | [ |
苦参 | 2 068.9 | 超级电容器:386.0 F/g (1.0 A/g) | [ |
[1] |
ABNISA F, DAUD W M A W. A review on co-pyrolysis of biomass:An optional technique to obtain a high-grade pyrolysis oil[J]. Energy Conversion and Management, 2014, 87: 71-85.
doi: 10.1016/j.enconman.2014.07.007 |
[2] |
WANG Z, SHEN D, WU C, et al. State-of-the-art on the production and application of carbon nanomaterials from biomass[J]. Green Chemistry, 2018, 20: 5031-5057.
doi: 10.1039/C8GC01748D |
[3] | WANG Z, SMITH A T, WANG W, et al. Versatile nanostructures from rice husk biomass for energy applications[J]. Angewandte Chemie, 2018, 57: 13722-13734. |
[4] |
PRADHAN P, MAHAJANI S M, ARORA A. Production and utilization of fuel pellets from biomass: A review[J]. Fuel Processing Technology, 2018, 181: 215-232.
doi: 10.1016/j.fuproc.2018.09.021 |
[5] |
LIU C, WANG H, KARIM A M, et al. Catalytic fast pyrolysis of lignocellulosic biomass[J]. Chemical Society Reviews, 2014, 43: 7594-7623.
doi: 10.1039/c3cs60414d pmid: 24801125 |
[6] | SULIMAN W, HARSH J B, ABU-LAIL N I, et al. Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties[J]. Biomass and Bioenergy, 2016, 48: 37-48. |
[7] |
HUANG J, LIU C, TONG H, et al. Theoretical studies on pyrolysis mechanism of xylopyranose[J]. Computational and Theoretical Chemistry, 2012, 1001: 44-50.
doi: 10.1016/j.comptc.2012.10.015 |
[8] | ZHANG Z, LIU C, LI H, et al. Theoretical studies of pyrolysis mechanism of xylan monomer[J]. Acta Chimica Sinica, 2011, 69(18):2099-2107. |
[9] |
GEIM A K. Graphene: Status and prospects[J]. Science, 2009, 324: 1530-1534.
doi: 10.1126/science.1158877 pmid: 19541989 |
[10] |
IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56-58.
doi: 10.1038/354056a0 |
[11] |
KROTO H W, HEATH J R, O'BRIEN S C, et al. C60: Buckminsterfullerene[J]. Nature, 1985, 318: 162-163.
doi: 10.1038/318162a0 |
[12] |
DUBEY R, GURUVIAH V. Review of carbon-based electrode materials for supercapacitor energy storage[J]. Ionics, 2019, 25(4): 1419-1445.
doi: 10.1007/s11581-019-02874-0 |
[13] |
PAN H, LI J, FENG Y. Carbon nanotubes for supercapacitor[J]. Nanoscale Research Letters, 2010, 5(3): 654.
doi: 10.1007/s11671-009-9508-2 pmid: 20672061 |
[14] |
PANDOLFO A G, HOLLENKAMP A F. Carbon properties and their role in supercapacitors[J]. Journal of Power Sources, 2006, 157(1): 11-27.
doi: 10.1016/j.jpowsour.2006.02.065 |
[15] |
TIAN J, SHI Y, FAN W, et al. Ditungsten carbide nanoparticles embedded in electrospun carbon nanofiber membranes as flexible and high-performance supercapacitor electrodes[J]. Composites Communications, 2019, 12: 21-25.
doi: 10.1016/j.coco.2018.12.003 |
[16] |
CHEN C, WANG Y, MENG T, et al. Electrically conductive polyacrylamide/carbon nanotube hydrogel: Reinforcing effect from cellulose nanofibers[J]. Cellulose, 2019, 26(16): 8843-8851.
doi: 10.1007/s10570-019-02710-8 |
[17] |
ONISHCHENKO D V, REVA V P. Sorption properties of multilayer carbon nanotubes produced from cotton[J]. Coke and Chemistry, 2013, 56(7): 262-265.
doi: 10.3103/S1068364X13070053 |
[18] |
BI Z, KONG Q, CAO Y, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes:A review[J]. Journal of Materials Chemistry A, 2019, 7(27): 16028-16045.
doi: 10.1039/C9TA04436A |
[19] |
CHEN J, FANG K, CHEN Q, et al. Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors[J]. Nano Energy, 2018, 53: 337-344.
doi: 10.1016/j.nanoen.2018.08.056 |
[20] |
CHEN Y, LU K, SONG Y, et al. A skin-inspired stretchable, self-healing and electro-conductive hydrogel with a synergistic triple network for wearable strain sensors applied in human-motion detection[J]. Nanomaterials, 2019, 9(12):1737.
doi: 10.3390/nano9121737 |
[21] |
HAN J, DING Q, MEI C, et al. An intrinsically self-healing and biocompatible electroconductive hydrogel based on nanostructured nanocellulose-polyaniline complexes embedded in a viscoelastic polymer network towards flexible conductors and electrodes[J]. Electrochimica Acta, 2019, 318: 660-672.
doi: 10.1016/j.electacta.2019.06.132 |
[22] |
CAI J, NIU H, WANG H, et al. High-performance supercapacitor electrode from cellulose-derived, inter-bonded carbon nanofibers[J]. Journal of Power Sources, 2016, 324: 302-308.
doi: 10.1016/j.jpowsour.2016.05.070 |
[23] |
LI Q, DENG L, KIM J K, et al. Growth of carbon nanotubes on electrospun cellulose fibers for high performance supercapacitors[J]. Journal of the Electrochemical Society, 2017, 164(13): A3220.
doi: 10.1149/2.1181713jes |
[24] |
MA C, CHEN J, FAN Q, et al. Preparation and one-step activation of nanoporous ultrafine carbon fibers derived from polyacrylonitrile/cellulose blend for used as supercapacitor electrode[J]. Journal of Materials Science, 2018, 53(6): 4527-4539.
doi: 10.1007/s10853-017-1887-7 |
[25] |
FAN Q, MA C, WU L, et al. Preparation of cellulose acetate derived carbon nanofibers by ZnCl2 activation as a supercapacitor electrode[J]. RSC Advances, 2019, 9(12): 6419-6428.
doi: 10.1039/C8RA07587E |
[26] |
GAMINIAN H, MONTAZER M, BAHI A, et al. Capacitance performance boost of cellulose-derived carbon nanofibers via carbon and silver nanoparticles[J]. Cellulose, 2019, 26(4): 2499-2512.
doi: 10.1007/s10570-018-2219-z |
[27] | SONG Y, ZHANG W, HE S, et al. Perylene diimide and luminol as potential-resolved electrochemiluminescence nanoprobes for dual targets immunoassay at low potential[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 33676-33683. |
[28] | HAN J, WANG S, ZHU S, et al. Electrospun core-shell nanofibrous membranes with nanocellulose-stabilized carbon nanotubes for use as high-performance flexible supercapacitor electrodes with enhanced water resistance, thermal stability, and mechanical toughness[J]. ACS Applied Materials & Interfaces, 2019, 11(47):44624-44635. |
[29] |
LI Q, XIE S, SEREM W K, et al. Quality carbon fibers from fractionated lignin[J]. Green Chemistry, 2017, 19(7): 1628-1634.
doi: 10.1039/C6GC03555H |
[30] |
YOUE W J, LEE S M, LEE S S, et al. Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer[J]. International Journal of Biological Macromolecules, 2016, 82: 497-504.
doi: 10.1016/j.ijbiomac.2015.10.022 |
[31] |
LIN J, ZHAO G. Preparation and characterization of high surface area activated carbon fibers from lignin[J]. Polymers, 2016, 8(10):369.
doi: 10.3390/polym8100369 |
[32] |
GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191.
doi: 10.1038/nmat1849 pmid: 17330084 |
[33] |
HUANG Y, LIANG J, CHEN Y. An overview of the applications of graphene-based materials in supercapacitors[J]. Small, 2012, 8(12): 1805-1834.
doi: 10.1002/smll.201102635 pmid: 22514114 |
[34] |
HUANG Z, LI L, WANG Y, et al. Polyaniline/graphene nanocomposites towards high-performance supercapacitors:A review[J]. Composites Communications, 2018, 8: 83-91.
doi: 10.1016/j.coco.2017.11.005 |
[35] |
PURKAIT T, SINGH G, SINGH M, et al. Large area few-layer graphene with scalable preparation from waste biomass for high-performance supercapacitor[J]. Scientific Reports, 2017, 7(1): 15239.
doi: 10.1038/s41598-017-15463-w pmid: 29127348 |
[36] |
GAO K, NIU Q, TANG Q, et al. Graphene-like 2D porous carbon nanosheets derived from cornstalk pith for energy storage materials[J]. Journal of Electronic Materials, 2018, 47(1): 337-346.
doi: 10.1007/s11664-017-5771-7 |
[37] |
LUAN Y, WANG L, GUO S, et al. A hierarchical porous carbon material from a loofah sponge network for high performance supercapacitors[J]. RSC Advances, 2015, 5(53): 42430-42437.
doi: 10.1039/C5RA05688H |
[38] |
WU M, LI P, LI Y, et al. Enteromorpha based porous carbons activated by zinc chloride for supercapacitors with high capacity retention[J]. RSC Advances, 2015, 5(21): 16575-16581.
doi: 10.1039/C4RA13428A |
[39] |
WU M B, LI L Y, LIU J, et al. Template-free preparation of mesoporous carbon from rice husks for use in supercapacitors[J]. New Carbon Materials, 2015, 30(5): 471-475.
doi: 10.1016/S1872-5805(15)60201-3 |
[40] |
KARTHIKEYAN K, AMARESH S, LEE S N, et al. Construction of high-energy-density supercapacitors from pine-cone-derived high-surface-area carbons[J]. ChemSusChem, 2014, 7(5): 1435-1442.
doi: 10.1002/cssc.201301262 pmid: 24648276 |
[41] |
WU M B, LI R C, HE X J, et al. Microwave-assisted preparation of peanut shell-based activated carbons and their use in electrochemical capacitors[J]. New Carbon Materials, 2015, 30(1): 86-89.
doi: 10.1016/S1872-5805(15)60178-0 |
[42] |
KOUCHACHVILI L, MAFFEI N, ENTCHEV E. Infested ash trees as a carbon source for supercapacitor electrodes[J]. Journal of Porous Materials, 2015, 22(4): 979-988.
doi: 10.1007/s10934-015-9972-2 |
[43] |
WANG D, GENG Z, LI B, et al. High performance electrode materials for electric double-layer capacitors based on biomass-derived activated carbons[J]. Electrochimica Acta, 2015, 173: 377-384.
doi: 10.1016/j.electacta.2015.05.080 |
[44] |
WANG K, ZHAO N, LEI S, et al. Promising biomass-based activated carbons derived from willow catkins for high performance supercapacitors[J]. Electrochimica Acta, 2015, 166: 1-11.
doi: 10.1016/j.electacta.2015.03.048 |
[45] |
REDONDO E, CARRETERO-GONZÁLEZ J, GOIKOLEA E, et al. Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits[J]. Electrochimica Acta, 2015, 160: 178-184.
doi: 10.1016/j.electacta.2015.02.006 |
[46] |
TAN X F, LIU S B, LIU Y G, et al. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage[J]. Bioresource Technology, 2017, 227: 359-372.
doi: 10.1016/j.biortech.2016.12.083 |
[47] |
ZHANG G, CHEN Y, CHEN Y, et al. Activated biomass carbon made from bamboo as electrode material for supercapacitors[J]. Materials Research Bulletin, 2018, 102: 391-398.
doi: 10.1016/j.materresbull.2018.03.006 |
[48] |
TIAN N, GAO M, LIU X H, et al. Activated carbon derived from walnut green peel as an electrode material for high-performance supercapacitors[J]. Biomass Conversion and Biorefinery, 2022, 1:1-9.
doi: 10.1007/s13399-010-0002-y |
[49] |
MARTIN-MARTINEZ M, BARREIRO M F F, SILVA A M T, et al. Lignin-based activated carbons as metal-free catalysts for the oxidative degradation of 4-nitrophenol in aqueous solution[J]. Applied Catalysis B: Environmental, 2017, 219: 372-378.
doi: 10.1016/j.apcatb.2017.07.065 |
[50] |
CHEN W, ZHOU X, SHI S, et al. Synergistical enhancement of the electrochemical properties of lignin-based activated carbon using NH3·H2O dielectric barrier discharge plasma[J]. RSC Advances, 2017, 7(12):7392-7400.
doi: 10.1039/C6RA26010A |
[51] |
ZHANG W, YIN J, LIN Z, et al. Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance[J]. Electrochimica Acta, 2015, 176: 1136-1142.
doi: 10.1016/j.electacta.2015.08.001 |
[52] |
XU X, ZHOU J, NAGARAJU D H, et al. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: Catalyst-free synthesis and its application in energy storage devices[J]. Advanced Functional Materials, 2015, 25(21): 3193-3202.
doi: 10.1002/adfm.v25.21 |
[53] |
YUE Y, WANG Y, LI J, et al. High strength and ultralight lignin-mediated fire-resistant aerogel for repeated oil/water separation[J]. Carbon, 2022, 193: 285-297.
doi: 10.1016/j.carbon.2022.03.015 |
[54] | LI Z, BAI Z, MI H, et al. Biowaste-derived porous carbon with tuned microstructure for high-energy quasi-solid-state supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2019, 7:13127-13135. |
[55] |
HUANG J, WU J, DAI F, et al. 3D honeycomb-like carbon foam synthesized with biomass buckwheat flour for high-performance supercapacitor electrodes[J]. Chemical Communications, 2019, 55:9168-9171.
doi: 10.1039/C9CC03039E |
[56] | SU L, KONG L, HAO S, et al. Honeycomb-like porous carbon with nanographitic domains, supported on graphene layers:Applicability for lithium/sodium storage[J]. ACS Sustainable Chemistry & Engineering, 2019, 7:10986-10994. |
[57] |
PARK S K, KWON S H, LEE S G, et al. 105 cyclable pseudocapacitive Na-ion storage of hierarchically structured phosphorus-incorporating nanoporous carbons in organic electrolytes[J]. ACS Energy Letters, 2018, 3:724-732.
doi: 10.1021/acsenergylett.8b00068 |
[58] |
CHEN C, HUANG Y, MENG Z, et al. Multi-heteroatom doped porous carbon derived from insect feces for capacitance-enhanced sodium-ion storage[J]. Journal of Energy Chemistry, 2021, 54:482-492.
doi: 10.1016/j.jechem.2020.06.025 |
[59] | WANG J, QIN F, GUO Z, et al. Oxygen- and nitrogen-enriched honeycomb-like porous carbon from laminaria japonica with excellent supercapacitor performance in aqueous solution[J]. ACS Sustainable Chemistry & Engineering, 2019, 7:11550-11563. |
[60] |
XIAO X, LI X, WANG Z, et al. Robust template-activator cooperated pyrolysis enabling hierarchically porous honeycombed defective carbon as highly-efficient metal-free bifunctional electrocatalyst for Zn-air batteries[J]. Applied Catalysis B: Environmental, 2020, 265:118603.
doi: 10.1016/j.apcatb.2020.118603 |
[61] |
ZHANG L, ZHU Y, ZHAO G, et al. O and P co-doped honeycomb-like hierarchical porous carbon derived from Sophora japonica for high performance supercapacitors[J]. RSC Advances, 2019, 9:37171-37178.
doi: 10.1039/C9RA06934H |
[62] | HU L, ZHU Q, WU Q, et al. Natural biomass-derived hierarchical porous carbon synthesized by an in situ hard template coupled with NaH activation for ultrahigh rate supercapacitors[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13949-13959. |
[63] | SUN L, ZHOU Y, LI L, et al. Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors[J]. Applied Surface Science, 2019, 467-468: 382-390. |
[64] | SUN N, LI Z, ZHANG X, et al. Hierarchical porous carbon materials derived from kelp for superior capacitive applications[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(9): 8735-8743. |
[65] |
LIANG H W, GUAN Q F, ZHU Z, et al. Highly conductive and stretchable conductors fabricated from bacterial cellulose[J]. NPG Asia Materials, 2012, 4(6): e19.
doi: 10.1038/am.2012.34 |
[66] | WANG Z, SMITH AT, WANG W, et al. Versatile nanostructures from rice husk biomass for energy applications[J]. Angewandte Chemie, 2018, 57(42): 13722-13734. |
[67] |
NIU J, SHAO R, LIU M, et al. Porous carbons derived from collagen-enriched biomass: Tailored design, synthesis, and application in electrochemical energy storage and conversion[J]. Advanced Functional Materials, 2019, 29(46): 1905095.
doi: 10.1002/adfm.v29.46 |
[68] | BI Z, KONG Q, CAO Y, et al. Biomass-derived porous carbon materials with different dimensions for supercapacitor electrodes:A review[J]. Journal of Materials Chemistry A, 2019, 27: 16028-16045. |
[69] |
ZHANG Y, TANG A, YANG H, et al. Applications and interfaces of halloysite nanocomposites[J]. Applied Clay Science, 2016, 119:8-17.
doi: 10.1016/j.clay.2015.06.034 |
[70] |
HE C, ZHAO J, YANG Y, et al. multiscale characteristics dynamics of hydrochar from hydrothermal conversion of sewage sludge under sub- and near-critical water[J]. Bioresource Technology, 2016, 211: 486-493.
doi: 10.1016/j.biortech.2016.03.110 pmid: 27035482 |
[71] |
YURTSEVER A, SAHINKAYA E, AKTAŞ Ö, et al. Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater[J]. Bioresource Technology, 2015, 192: 564-573.
doi: 10.1016/j.biortech.2015.06.024 pmid: 26093251 |
[72] |
LI F, WANG X, SUN R. A metal-free and flexible supercapacitor based on redox-active lignosulfonate functionalized graphene hydrogels[J]. Journal of Materials Chemistry A, 2017, 5(39): 20643-20650.
doi: 10.1039/C7TA03789A |
[73] | YAN D, YU C, ZHANG X, et al. Nitrogen-doped carbon microspheres derived from oatmeal as high capacity and superior long life anode material for sodium ion battery[J]. Electrochimica Acta, 2016, 191: 3853-3891. |
[74] |
KUROSAKI F, KOYANAKA H, TSUJIMOTO M, et al. Shape-controlled multi-porous carbon with hierarchical micro-meso-macro pores synthesized by flash heating of wood biomass[J]. Carbon, 2008, 46(6): 850-857.
doi: 10.1016/j.carbon.2008.02.014 |
[75] |
WANG Y, LIN X, LIU T, et al. Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors[J]. Advanced Functional Materials, 2018, 28(52): 1806207.
doi: 10.1002/adfm.v28.52 |
[76] | BISWAL M, BANERJEE A, DEO M, et al. From dead leaves to high energy density supercapacitors[J]. Energy & Environmental Science, 2013, 6(4): 1249-1259. |
[77] |
ZHOU Y, REN J, YANG Y, et al. Biomass-derived nitrogen and oxygen co-doped hierarchical porous carbon for high performance symmetric supercapacitor[J]. Journal of Solid State Chemistry, 2018, 268: 149-158.
doi: 10.1016/j.jssc.2018.08.041 |
[78] |
CHEMYSHEVA D V, CHUS Y A, KLUSHIN V A, et al. Sustainable utilization of biomass refinery wastes for accessing activated carbons and supercapacitor electrode materials[J]. ChemSusChem, 2018, 11 (20): 3599-3608.
doi: 10.1002/cssc.201801757 pmid: 30168655 |
[79] |
WANG J, NIE P, DING B, et al. Biomass derived carbon for energy storage devices[J]. Journal of Materials Chemistry A, 2017, 5(6): 2411-2428.
doi: 10.1039/C6TA08742F |
[80] |
WANG C, WU D, WANG H, et al. Biomass derived nitrogen-doped hierarchical porous carbon sheets for supercapacitors with high performance[J]. Journal of Colloid and Interface Science, 2018, 523:133-143.
doi: S0021-9797(18)30251-0 pmid: 29614422 |
[81] |
DU W, ZHANG Z, DU L, et al. Designing synthesis of porous biomass carbon from wheat straw and the functionalizing application in flexible, all-solid-state supercapacitors[J]. Journal of Alloys and Compounds, 2019, 797: 1031-1040.
doi: 10.1016/j.jallcom.2019.05.207 |
[82] |
HUANG C, SUN T, HULICOVA-JURCAKOVA D. Wide electrochemical window of supercapacitors from coffee bean-derived phosphorus-rich carbons[J]. ChemSusChem, 2013, 6(12): 2330-2339.
doi: 10.1002/cssc.201300457 pmid: 24039010 |
[83] | CHUNG D Y, SON Y J, YOO J M, et al. Coffee waste-derived hierarchical porous carbon as a highly active and durable electrocatalyst for electrochemical energy applications[J]. ACS Applied Materials & Interfaces, 2017, 9(47): 41303-41313. |
[84] |
WANG J, KASKEL S. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725.
doi: 10.1039/c2jm34066f |
[85] |
ZHANG L, ZHANG F, YANG X, et al. High-performance supercapacitor electrode materials prepared from various pollens[J]. Small, 2013, 9(8): 1342-1347.
doi: 10.1002/smll.201202943 pmid: 23494916 |
[86] |
ZHAO G, CHEN C, YU D, et al. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors[J]. Nano Energy, 2018, 47: 547-555.
doi: 10.1016/j.nanoen.2018.03.016 |
[87] |
LIU X, MA C, LI J, et al. Biomass-derived robust three-dimensional porous carbon for high volumetric performance supercapacitors[J]. Journal of Power Sources, 2019, 412: 1-9.
doi: 10.1016/j.jpowsour.2018.11.032 |
[88] |
HONG K L, QIE L, ZENG R, YI Z, et al. Biomass derived hard carbon used as a high performance anode material for sodium ion batteries[J]. Journal of Materials Chemistry A, 2014, 2(32): 12733-12738.
doi: 10.1039/C4TA02068E |
[89] |
SEVILLA M, FUERTES A B. A green approach to high-performance supercapacitor electrodes: The chemical activation of hydrochar with potassium bicarbonate[J]. ChemSusChem, 2016, 9: 1880-1888.
doi: 10.1002/cssc.201600426 pmid: 27273466 |
[90] |
GHOSH S, SANTHOSH R, JENIFFER S, et al. Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes[J]. Scientific Reports, 2019, 9(1): 16315.
doi: 10.1038/s41598-019-52006-x pmid: 31704953 |
[91] |
WANG Y, QU Q, GAO S, et al. Biomass derived carbon as binder-free electrode materials for supercapacitors[J]. Carbon, 2019, 155: 706-726.
doi: 10.1016/j.carbon.2019.09.018 |
[92] |
SUN L, FU Y, TIAN C, et al. Isolated boron and nitrogen sites on porous graphitic carbon synthesized from nitrogen-containing chitosan for supercapacitors[J]. ChemSusChem, 2014, 7(6): 1637-1646.
doi: 10.1002/cssc.201400048 pmid: 24692324 |
[93] |
LUO W, WANG B, HERON C G, et al. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation[J]. Nano Letters, 2014, 14(4): 2225-2229.
doi: 10.1021/nl500859p pmid: 24679142 |
[94] |
LI H, YUAN D, TANG C, et al. Lignin-derived interconnected hierarchical porous carbon monolith with large areal/volumetric capacitances for supercapacitor[J]. Carbon, 2016, 100: 151-157.
doi: 10.1016/j.carbon.2015.12.075 |
[95] |
XIA C, SHI S Q. Self-activation for activated carbon from biomass:Theory and parameters[J]. Green Chemistry, 2016, 18(7): 2063-2071.
doi: 10.1039/C5GC02152A |
[96] |
SAHA D, LI Y, BI Z, et al. Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon[J]. Langmuir, 2014, 30(3): 900-910.
doi: 10.1021/la404112m pmid: 24400670 |
[97] |
PENG H, YAO B, WEI X, et al. Pore and heteroatom engineered carbon foams for supercapacitors[J]. Advanced Energy Materials, 2019, 9(19):1803665.
doi: 10.1002/aenm.v9.19 |
[98] |
TIAN J, LIU Z, LI Z, et al. Hierarchical S-doped porous carbon derived from by-product lignin for high-performance supercapacitors[J]. RSC Advances, 2017, 7(20): 12089-12097.
doi: 10.1039/C7RA00767A |
[99] |
HU S, ZHANG S, PAN N, et al. High energy density supercapacitors from lignin derived submicron activated carbon fibers in aqueous electrolytes[J]. Journal of Power Sources, 2014, 270: 106-112.
doi: 10.1016/j.jpowsour.2014.07.063 |
[100] | CHEN L F, HUANG Z H, LIANG H W, et al. Flexible all-solid-state high-power supercapetitor fabricated with nitrogen-doped carbon nanofiber electrode material derived from bacterial cellulose[J]. Energy & Environmental Science, 2013, 6(11): 3331-3338. |
[101] |
WANG H, WANG C, DANG B, et al. Nitrogen, sulfur, phosphorous co-doped interconnected porous carbon nanosheets with high defect density for enhancing supercapacitor and lithium-ion battery properties[J]. ChemElectroChem, 2018, 5(17): 2367-2375.
doi: 10.1002/celc.v5.17 |
[102] | CHEN X, CHI M, XING L, et al. Natural plant template derived cellular framework porous carbon as a high-rate and long-life electrode material for energy storage[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(6): 5845-5855. |
[103] |
LIU S, LIANG Y, ZHOU W, et al. Large-scale synthesis of porous carbon via one-step CuCl2 activation of rape pollen for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2018, 6(25): 12046-12055.
doi: 10.1039/C8TA02838A |
[104] |
LI Y, WANG G, WEI T, et al. Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors[J]. Nano Energy, 2016, 19: 165-175.
doi: 10.1016/j.nanoen.2015.10.038 |
[105] | HU Y, TONG X, ZHUO H, et al. Biomass-based porous N-self-doped carbon framework/polyaniline composite with outstanding supercapacitance[J]. AC Sustainable Chemistry & Engineering, 2017, 5(10): 8663-8674. |
[106] |
YANG M, KIM D S, HONG S B, et al. MnO2 nanowire/biomass-derived carbon from hemp stem for high-performance supercapacitors[J]. Langmuir, 2017, 33(21): 5140-5147.
doi: 10.1021/acs.langmuir.7b00589 |
[107] |
HE S, CHEN W. Application of biomass-derived flexible carbon cloth coated with MnO2 nanosheets in supercapacitors[J]. Journal of Power Sources, 2015, 294: 150-158.
doi: 10.1016/j.jpowsour.2015.06.051 |
[1] | 邹风华, 朱星阳, 殷俊平, 孟诗语, 江海燕, 陈爱康, 刘澜. “双碳”目标下建筑能源系统发展趋势分析[J]. 综合智慧能源, 2024, 46(8): 36-40. |
[2] | 徐智帆, 李华森, 李文院, 余凯. 基于递归小脑模型神经网络和卡尔曼滤波器的锂电池荷电状态预测[J]. 综合智慧能源, 2024, 46(7): 81-86. |
[3] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[4] | 王林, 孔小民, 周忠玉, 刘建平, 王晓东, 张宁. 云储能模式下的配电网分布式光伏-储能无功优化方法[J]. 综合智慧能源, 2024, 46(6): 44-53. |
[5] | 张勋祥, 吴杰康, 孙烨桦, 彭其坚. 平抑海上风电波动的混合储能系统容量优化配置[J]. 综合智慧能源, 2024, 46(6): 54-65. |
[6] | 龚钢军, 王路遥, 常卓越, 柳旭, 邢汇笛. 基于能源枢纽的综合能源信息物理系统安全防护架构研究[J]. 综合智慧能源, 2024, 46(5): 65-72. |
[7] | 李云, 周世杰, 胡哲千, 梁均原, 肖雷鸣. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4): 1-9. |
[8] | 董强, 徐君, 方东平, 方丽娟, 陈妍琼. 基于光伏出力特性的分布式光储系统优化调度策略[J]. 综合智慧能源, 2024, 46(4): 17-23. |
[9] | 王京龙, 王晖, 杨野, 郑颖颖. 考虑多重不确定性的电-热-气综合能源系统协同优化方法[J]. 综合智慧能源, 2024, 46(4): 42-51. |
[10] | 苏盼盼, 王学涛, 邢利利, 李浩杰, 刘梦杰. 生物质预处理催化热解制备液体燃料研究进展[J]. 综合智慧能源, 2024, 46(3): 1-11. |
[11] | 苑曙光, 张瑜婷, 王峰, 苑广震. 蒙西地区规模化储能商业运行模式及风险分析[J]. 综合智慧能源, 2024, 46(3): 63-71. |
[12] | 李益民, 董海鹰, 丁坤, 王金岩. 考虑长期负荷概率预测的储能多阶段优化配置[J]. 综合智慧能源, 2024, 46(2): 19-27. |
[13] | 孙娜, 董海鹰, 陈薇, 马虎林. 新型电力系统场景下网侧规模化储能二次调频控制策略[J]. 综合智慧能源, 2024, 46(2): 59-67. |
[14] | 孔慧超, 王文钟, 雷一, 彭静, 李海波. 园区受端新型电力系统电力电量再平衡方法[J]. 综合智慧能源, 2024, 46(2): 68-74. |
[15] | 田泽禹, 沙钊旸, 赵全斌, 严卉, 种道彤. 针对温控负载变化的虚拟电厂控制策略研究[J]. 综合智慧能源, 2024, 46(1): 28-37. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||