综合智慧能源 ›› 2023, Vol. 45 ›› Issue (5): 70-79.doi: 10.3969/j.issn.2097-0706.2023.05.008
房瑞1a, 段志勇1a, 刘在智1a, 王宇轩1b, 刘辰希1b, 李浩1a, 范垂钢2,*()
收稿日期:
2023-01-28
修回日期:
2023-03-21
出版日期:
2023-05-25
通讯作者:
*范垂钢(1977),男,副研究员,博士,从事能源化工与环境方面的研究,cgfan@ipe.ac.cn。作者简介:
房瑞(2002),女,从事能源与动力工程方面的研究。
FANG Rui1a, DUAN Zhiyong1a, LIU Zaizhi1a, WANG Yuxuan1b, LIU Chenxi1b, LI Hao1a, FAN Chuigang2,*()
Received:
2023-01-28
Revised:
2023-03-21
Published:
2023-05-25
摘要:
随着工业技术的发展,海洋垃圾已经成为海洋治理中不可忽视的问题。全球海洋垃圾总量大、分布范围广,包括塑料类、木制品类、纸制品类和金属类,其中塑料是海洋垃圾的主要组成部分。海洋垃圾不仅造成视觉污染、影响船舶行驶安全,还严重威胁海洋生物与海洋生态平衡。综述了海洋垃圾治理技术,包括定位与监测、收集和处理3个环节。定位与监测领域,深度学习技术已经应用于海洋垃圾的自动监测。在收集方面,专业垃圾清理船等传统装置仍占主导地位,自动水面清洁器等新型设备尚在不断研发与完善中。海洋垃圾处理方法主要包括填埋法、焚烧、热解、微生物治理法等,其中热解法不仅避免了二噁英等污染物的产生,还可用于制备高热值燃油等附加产品,有助于实现海洋垃圾能量循环再利用。下一阶段,开发同时具备定位、收集、处理能力的系统将成为趋势。
中图分类号:
房瑞, 段志勇, 刘在智, 王宇轩, 刘辰希, 李浩, 范垂钢. 海洋垃圾治理技术综述[J]. 综合智慧能源, 2023, 45(5): 70-79.
FANG Rui, DUAN Zhiyong, LIU Zaizhi, WANG Yuxuan, LIU Chenxi, LI Hao, FAN Chuigang. Review on marine litter treatment technologies[J]. Integrated Intelligent Energy, 2023, 45(5): 70-79.
表1
不同细菌和真菌降解PE能力对比
菌种 | 菌属 | PE来源 | 降解结果 | 参考文献 |
---|---|---|---|---|
Fusarium sp.FSM-3 | 真菌 | 土壤 | PE质量减少8.00% | [ |
Fusarium sp.FSM-6 | 真菌 | 土壤 | PE质量减少7.00% | [ |
Pseudomonas knackmussii N1-2 | 细菌 | 污水 处理厂 | PE质量减少 (5.95±0.03)% | [ |
Bacillus siamensis | 细菌 | 垃圾 处理厂 | PE质量减少 (8.46±0.30)% | [ |
Bacillus cereus | 细菌 | 垃圾 处理厂 | PE质量减少 (6.33±0.20)% | [ |
Zalerion maritimum | 真菌 | 海洋 | PE质量减少 | [ |
[1] |
KOUTSODENDRIS A, PAPATHEODOROU G, KOUGIOUROUKI O, et al. Benthic marine litter in four gulfs in Greece,Eastern Mediterranean;abundance,composition and source identification[J]. Estuarine,Coastal and Shelf Science, 2008, 77(3):501-512.
doi: 10.1016/j.ecss.2007.10.011 |
[2] | 国家海洋局生态环境保护司. 海洋垃圾监测与评价技术规程(试行)[EB/OL].(2015-12-18) [2023-03-20]. http://f.mnr.gov.cn/201806/P020220112564679841939.pdf. |
[3] | United Nations Environment Programme. World Environment Day 2023 to be hosted by Côte d'Ivoire with a focus on solutions to plastic pollution[R]. Nairobi:UNEP, 2023. |
[4] |
ERIKSEN M, MASON S, WILSON S, et al. Microplastic pollution in the surface waters of the Laurentian Great Lakes[J]. Marine Pollution Bulletin, 2013, 77(1-2):177-182.
pmid: 24449922 |
[5] | PARK J, XU X, OH M, et al. Development on the technology for offshore waste final disposal in S.Korea[EB/OL].(2019-05-17) [2023-03-20].https://doi.org/10.1007/978-981-13-7010-6_2. |
[6] | WILLIAMS-WYNN MD, NAIDOO P. A review of the treatment options for marine plastic waste in South Africa[J/OL]. Marine Pollution Bulletin, 2020.(2020-10-28) [2023-03-20].https://doi.org/10.1016/j.marpolbul.2020.111785. |
[7] | SUGIANTO E, CHEN J H, PURBA N P. Cleaning technology for marine debris:A review of current status and evaluation[J]. International Journal of Environmental Science and Technology, 2023(20):4549-4568. |
[8] | NAIDOO T, RAJKARAN A, SERSHEN. Impacts of plastic debris on biota and implications for human health:A South African perspective[J]. South African Journal of Science, 2020, 116(5,6):43-50. |
[9] |
RYAN P G. Entanglement of birds in plastics and other synthetic materials[J]. Marine Pollution Bulletin, 2018, 135:159-164.
doi: S0025-326X(18)30462-4 pmid: 30301025 |
[10] | LAIST D W. Impacts of marine debris:Entanglement of marine life in marine debris including a comprehensive list of species with entanglement and ingestion records[J]. New York:Springer-Verlag, 1997:99-139. |
[11] | 廖琴, 曲建升, 王金平, 等. 世界海洋环境中的塑料污染现状分析及治理建议[J]. 世界科技研究与发展, 2015, 37(2):206-211,217. |
LIAO Qin, QU Jiansheng, WANG Jinping, et al. Pollution analysis of plastic and improving proposal in marine environment[J]. World Science-Technology R&D, 2015, 37(2):206-211,217. | |
[12] | 闻冰喆, 张今星, 崔晨宇, 等. 浅析海洋垃圾现状——以厦门为例[J]. 现代盐化工, 2021, 48(4):183-184. |
[13] | AOYAMA T. Monitoring of marine debris in the Sea of Japan using multi-spectral satellite images[C]// Proceedings of the Conference on Ocean Remote Sensing and Monitoring from Space, 2014. |
[14] | WATANABE J I, SHAO Y, MIURA N. Underwater and airborne monitoring of marine ecosystems and debris[J]. Journal of Applied Remote Sensing, 2019, 13(4):044509. |
[15] |
LU W, CHEN J. Computer vision for solid waste sorting:A critical review of academic research[J]. Waste Management, 2022, 142:29-43.
doi: 10.1016/j.wasman.2022.02.009 |
[16] |
PANWAR H, GUPTA P K, SIDDIQUI M K, et al. AquaVision:Automating the detection of waste in water bodies using deep transfer learning[J]. Case Studies in Chemical and Environmental Engineering, 2020, 2:100026.
doi: 10.1016/j.cscee.2020.100026 |
[17] |
WANG C, QIN J M, QU C, et al. A smart municipal waste management system based on deep-learning and Internet of Things[J]. Waste Management, 2021, 135:20-29.
doi: 10.1016/j.wasman.2021.08.028 pmid: 34461487 |
[18] |
NOWAKOWSKI P, PAMULA T. Application of deep learning object classifier to improve e-waste collection planning[J]. Waste Management, 2020, 109:1-9.
doi: S0956-053X(20)30210-5 pmid: 32361385 |
[19] | JOSEPH R, SANTOSH D, ROSS G, et al. You Only Look Once:Unified,real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).IEEE, 2016. |
[20] | GE Z P, SHI H H, MEI X F, et al. Semi-automatic recognition of marine debris on beaches[J]. Scientific Reports, 2016(6):25759. |
[21] | 王学志. 近海垃圾自动收集船主体结构的设计与研究[D]. 青岛: 青岛科技大学, 2019. |
WANG Xuezhi. Design and research on main structure of automatic garbage collection ship in offshore[D]. Qingdao: Qingdao University of Science & Technology, 2019. | |
[22] | 王春. 近海废弃物收集平台稳定性分析与研究[D]. 青岛: 青岛科技大学, 2022. |
WANG Chun. Stability analysis and research of offshore waste collection platform[D]. Qingdao: Qingdao University of Science & Technology, 2022. | |
[23] | RUMAN M R, DAS M, MAHMUD S M I, et al. Automated marine surface trash cleaner[C]// Proceedings of the IEEE 5th International Conference for Convergence in Technology (I2CT).IEEE, 2019. |
[24] |
YAO C K. Floating garbage collector based on open MV[J]. Journal of Physics:Conference Series, 2021, 1952(3):032058.
doi: 10.1088/1742-6596/1952/3/032058 |
[25] |
SHIRAKURA N, KIYOKAWA T, KUMAMOTO H, et al. Collection of marine debris by jointly using UAV-UUV with GUI for simple operation[J]. IEEE Access, 2021, 9:67432-67443.
doi: 10.1109/ACCESS.2021.3076110 |
[26] | HAN S, LEE W, JANG S, et al. Development of an unmanned conveyor belt recovery skimmer for floating marine debris and high viscosity oil[J]. Journal of the Korean Society of Marine Environment & Safety, 2017, 23(2):208-215. |
[27] |
IŇIGUEZ M E, CONESA J A, FULLANA A. Marine debris occurrence and treatment:A review[J]. Renewable and Sustainable Energy Reviews, 2016, 64:394-402.
doi: 10.1016/j.rser.2016.06.031 |
[28] | SHAH H H, AMIN M, IQBAL A, et al. A review on gasification and pyrolysis of waste plastics[J/OL]. Frontiers in Chemistry, 2023.(2023-02-03) [2023-03-20].https://doi.org/10.3389/fchem.2022.960894. |
[29] | 温源远. 借鉴国际经验技术加强我国海洋环境治理[J]. 世界环境, 2016(1):72-73. |
WEN Yuanyuan. Strengthening China's marine environmental governance by drawing lessons from international experiences and technologies[J]. World Environment, 2016(1):72-73. | |
[30] | KURNIAWAN M P, JHIBRIL, HARTANTO H N, et al. Construction of Waste-to-Energy (WTE) power plant in Balikpapan to handle waste and marine litter treatment in Indonesia[C]// 2019 International Conference on Technologies and Policies in Electric Power & Energy.Yogyakarta,Indonesia, 2019. |
[31] |
LI Yun, ZHAO Xingang, LI Yanbin, et al. Waste incineration industry and development policies in China[J]. Waste Management, 2015, 46:234-241.
doi: 10.1016/j.wasman.2015.08.008 pmid: 26303653 |
[32] |
LECKNER B. Process aspects in combustion and gasification Waste-to-Energy (WtE) units[J]. Waste Management, 2015, 37:13-25.
doi: 10.1016/j.wasman.2014.04.019 pmid: 24846797 |
[33] |
LU Jiawei, ZHANG Sukun, JingHAI, et al. Status and perspectives of municipal solid waste incineration in China:A comparison with developed regions[J]. Waste Management, 2017, 69:170-186.
doi: S0956-053X(17)30231-3 pmid: 28408280 |
[34] |
JUNG R T, SUNG H G, CHUN T B, et al. Practical engineering approaches and infrastructure to address the problem of marine debris in Korea[J]. Marine Pollution Bulletin, 2010, 60(9):1523-1532.
doi: 10.1016/j.marpolbul.2010.04.016 |
[35] |
CZAJCZYNSKA D, NANNOU T, Anguilano L, et al. Potentials of pyrolysis processes in the waste management sector[J]. Energy Procedia, 2017, 123:387-394.
doi: 10.1016/j.egypro.2017.07.275 |
[36] |
TONDL G, BONELL L, PFEIFER C. Thermogravimetric analysis and kinetic study of marine plastic litter[J]. Marine Pollution Bulletin, 2018, 133:472-477.
doi: S0025-326X(18)30377-1 pmid: 30041339 |
[37] |
QUESADA L, PÉREZ A, GODOY V, et al. Optimization of the pyrolysis process of a plastic waste to obtain a liquid fuel using different mathematical models[J]. Energy Conversion and Management, 2019, 188:19-26.
doi: 10.1016/j.enconman.2019.03.054 |
[38] |
SINGH R K, RUJ B, SADHUKHAN A K, et al. Thermal degradation of waste plastics under non-sweeping atmosphere:Part 1:Effect of temperature,product optimization,and degradation mechanism[J]. Journal of Environmental Management, 2019, 239:395-406.
doi: 10.1016/j.jenvman.2019.03.067 |
[39] |
FAUSSONE G C, CECCHI T. Chemical recycling of plastic marine litter:First analytical characterization of the pyrolysis oil and of its fractions and comparison with a commercial marine gasoil[J]. Sustainability, 2022, 14(3):1235.
doi: 10.3390/su14031235 |
[40] | ZHOU X, BROADBELT L J, VINU R. Mechanistic understanding of thermochemical conversion of polymers and lignocellulosic biomass[J]. Advances in Chemical Engineering, 2016, 49:95-198. |
[41] | BELEDN E R, KAZANTZIS N K, REDDY C M, et al. Thermodynamic feasibility of shipboard conversion of marine plastics to blue diesel for self-powered ocean cleanup[J]. Proceedings of the National Academy of Sciences, 2021, 118(46):e2107250118. |
[42] | REX P, GANESAN V, SIVASHANKAR V, et al. Prospective review for development of sustainable catalyst and absorbents from biomass and application on plastic waste pyrolysis[J]. International Journal of Environmental Science and Technology, 2022:1-16. |
[43] | VEKSHA A, AHAMED A, WU X Y, et al. Technical and environmental assessment of laboratory scale approach for sustainable management of marine plastic litter[J]. Journal of Hazardous Materials, 2022(421):126717. |
[44] |
LIU S F, LEE T C, MCMILLIN M, et al. Using kiln boats to reuse marine plastics[J]. Journal of Marine Science and Engineering, 2022, 10(4):465.
doi: 10.3390/jmse10040465 |
[45] |
SUDHAKAR M, TRISHUL A, DOBLE M, et al. Biofouling and biodegradation of polyolefins in ocean waters[J]. Polymer Degradation and Stability, 2007, 92(9):1743-1752.
doi: 10.1016/j.polymdegradstab.2007.03.029 |
[46] | DAS M P, KUMAR S. Microbial deterioration of low density polyethylene by aspergillus and fusarium sp[J]. International Journal of ChemTech Research, 2014, 6(1):299-305. |
[47] |
HOU L J, XI J, LIU J X, et al. Biodegradability of polyethylene mulching film by two pseudomonas bacteria and their potential degradation mechanism[J]. Chemosphere, 2022, 286(3):131758.
doi: 10.1016/j.chemosphere.2021.131758 |
[48] | MAROOF L, KHAN I, YOO H S, et al. Identification and characterization of low density polyethylene-degrading bacteria isolated from soils of waste disposal sites[J]. Environmental Engineering Research, 2021, 26(3):200167. |
[49] |
PACO A, DUARTE K, COSTA J P, et al. Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum[J]. Science of the Total Environment, 2017, 586:10-15.
doi: 10.1016/j.scitotenv.2017.02.017 |
[1] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[2] | 王亮, 邓松. 面向新型电力系统的异常数据检测方法[J]. 综合智慧能源, 2024, 46(5): 12-19. |
[3] | 苏盼盼, 王学涛, 邢利利, 李浩杰, 刘梦杰. 生物质预处理催化热解制备液体燃料研究进展[J]. 综合智慧能源, 2024, 46(3): 1-11. |
[4] | 李方一, 李楠, 周琰, 谢武. 基于多维数据与深度学习的区域发电碳排放因子预测研究[J]. 综合智慧能源, 2023, 45(8): 11-17. |
[5] | 陈文轩, 李学琴, 刘鹏, 李艳玲, 卢岩, 雷廷宙. 催化生物质焦油模型化合物热解规律的研究[J]. 综合智慧能源, 2023, 45(5): 63-69. |
[6] | 蒋雨辰, 李清扬, 胡勋. 基于微波热解技术制备生物炭的研究进展[J]. 综合智慧能源, 2023, 45(5): 46-62. |
[7] | 杨伟, 吕雷达, 彭诗阳, 李威, 蔡红春, 韩勇, 朱有健, 杨海平, 赵海. 酸洗和磷酸浸渍对浮萍热解特性的影响研究[J]. 综合智慧能源, 2023, 45(5): 39-45. |
[8] | 范德锴, 付洁, 刘洋, 周春宝, 代建军. 纤维素热解制备高值化学品的研究综述[J]. 综合智慧能源, 2023, 45(5): 24-31. |
[9] | 林泓宏, 余涛, 张桂源, 张孝顺. 基于数据驱动的高比例新能源配电网无功优化算法[J]. 综合智慧能源, 2023, 45(11): 10-19. |
[10] | 吕政权, 李朝阳, 王海峰, 陈怡君, 彭道刚. 基于GRU-CNN的综合能源网络安全攻击检测方法[J]. 华电技术, 2021, 43(2): 9-14. |
[11] | 肖新帅, 田秀霞, 徐曼. 基于端到端算法的绝缘子检测技术研究[J]. 华电技术, 2021, 43(2): 28-33. |
[12] | 郑少伟,王志强*,王鹏,程星星,许焕焕. 热解半焦的清洁高效利用现状及研究进展[J]. 华电技术, 2020, 42(7): 42-49. |
[13] | 戴若薇, 赵瑞东, 秦建光, 陈天举, 吴晋沪. 热解半焦与褐煤掺烧及气体污染物排放特性 TG-FTIR 研究[J]. 华电技术, 2020, 42(7): 28-34. |
[14] | 邵磊,潘广强,张裕全,储昊,曹伟. 声波解堵提效技术在尿素热解炉上的应用[J]. 华电技术, 2020, 42(6): 43-46. |
[15] | 李小斌, 张红娜, 曲凯阳, 李凤臣 . 核能集中供热系统优越性分析[J]. 华电技术, 2020, 42(11): 69-82. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||