综合智慧能源 ›› 2023, Vol. 45 ›› Issue (5): 80-85.doi: 10.3969/j.issn.2097-0706.2023.05.009
• 生物质收集及存储 • 上一篇
胡玮麟1,2(), 谭梦娇1,*(
), 朱艺1,2(
), 张轩1(
), 李辉1,2(
), 杨海平1,3(
)
收稿日期:
2023-04-27
修回日期:
2023-05-05
出版日期:
2023-05-25
通讯作者:
*谭梦娇(1989),女,助理研究员,博士,从事固体废弃物资源化方面的研究,352128933@qq.com。作者简介:
胡玮麟(1997),女,在读硕士研究生,从事生物质储藏及温室气体排放方面的研究,710765877@qq.com;基金资助:
HU Weilin1,2(), TAN Mengjiao1,*(
), ZHU Yi1,2(
), ZHANG Xuan1(
), LI Hui1,2(
), YANG Haiping1,3(
)
Received:
2023-04-27
Revised:
2023-05-05
Published:
2023-05-25
Supported by:
摘要:
在全面响应“碳达峰”“碳中和”的背景下,需对典型可再生资源——生物质的利用与储藏进行研究。现有关于生物质直接储藏的研究大多借鉴的是堆肥、食品贮藏、秸秆青贮等技术的研究方法,对生物质在储藏阶段的温室气体排放不够重视。生物质储藏能够弥补原料采收、供应和需求之间的差异,是生物质供应链的核心环节。回顾了生物质储藏的概念、自发热与干物质损失机理,对比了生物质储藏技术与堆肥、厌氧消化、成型燃料储藏等传统技术。在此基础之上阐述了生物质储藏过程中产生温室气体的机理,并提出了减少干物质损失的新方法。在已有研究成果的基础上加大对储藏技术的研发投入,提高生物质储藏效率,可为生物质原料的绿色高效储藏提供依据。
中图分类号:
胡玮麟, 谭梦娇, 朱艺, 张轩, 李辉, 杨海平. 生物质储藏技术研究进展[J]. 综合智慧能源, 2023, 45(5): 80-85.
HU Weilin, TAN Mengjiao, ZHU Yi, ZHANG Xuan, LI Hui, YANG Haiping. Research progress of biomass storage technologies[J]. Integrated Intelligent Energy, 2023, 45(5): 80-85.
[1] | 韩世旺, 赵颖, 张兴宇, 等. 面向碳中和的新型电力系统氢储能调峰技术研究[J]. 综合智慧能源, 2022, 41(9): 20-26. |
HAN Shiwang, ZHAO Ying, ZHANG Xingyu, et al. Researches on hydrogen storage peak-shaving technology for new power systems to achieve carbon neutrality[J]. Integrated Intelligent Energy, 2022, 44(9): 20-26.
doi: 10.3969/j.issn.2097-0706.2022.09.003 |
|
[2] |
谢典, 高亚静, 芦新波, 等. 能耗“双控”向碳排放“双控”转变的实施路径研究[J]. 综合智慧能源, 2022, 44(7): 73-80.
doi: 10.3969/j.issn.2097-0706.2022.07.009 |
XIE Dian, GAO Yajing, LU Xinbo, et al. Researches on hydrogen storage peak-shaving technology for new power systems to achieve carbon neutrality[J]. Integrated Intelligent Energy, 2022, 44(7): 73-80.
doi: 10.3969/j.issn.2097-0706.2022.07.009 |
|
[3] |
JIAN J, STEELE M K, THOMAS R Q. Constraining estimates of global soil respiration by quantifying sources of variability[J]. Global Change Biology, 2018, 24(9):4143-4159.
doi: 10.1111/gcb.14301 pmid: 29749095 |
[4] |
WERNER S. District heating and cooling in Sweden[J]. Energy, 2017, 126: 419-429.
doi: 10.1016/j.energy.2017.03.052 |
[5] | ANERUD E, ERIKSSON A. Evaluation of an improved design for large-scale storage of wood chip and bark[J]. Biomass and Bioenergy, 2021, 154: 106-255. |
[6] |
WENDT L M, ZHAO H. Review on bioenergy storage systems for preserving and improving feedstock value[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8.DOI:10.3389/fbioe.2020.00370.
doi: 10.3389/fbioe.2020.00370 |
[7] |
HOFMANN N, MENDEL T, SCHULMEYER F, et al. Drying effects and dry matter losses during seasonal storage of spruce wood chips under practical conditions[J]. Biomass and Bioenergy, 2018, 111:196-205.
doi: 10.1016/j.biombioe.2017.03.022 |
[8] |
WINDISCH J, VÄÄTÄINEN K, ANTTILA P, et al. Discrete-event simulation of an information-based raw material allocation process for increasing the efficiency of an energy wood supply chain[J]. Applied Energy, 2015, 149: 315-325.
doi: 10.1016/j.apenergy.2015.03.122 |
[9] |
ERIKSSON A, ELLASSON L, SIKANEN L, et al. Evaluation of delivery strategies for forest fuels applying a model for weather-driven analysis of forest fuel systems(WAFFS)[J]. Applied Energy, 2017, 188: 420-430.
doi: 10.1016/j.apenergy.2016.12.018 |
[10] |
VÄÄTÄINEN K, PRINZ R, MALINEN J, et al. Alternative operation models for using a feed‐in terminal as a part of the forest chip supply system for a CHP plant[J]. GCB Bioenergy, 2017, 9(11):1657-1673.
doi: 10.1111/gcbb.2017.9.issue-11 |
[11] |
JIRJIS R. Storage and drying of wood fuel[J]. Biomass and Bioenergy, 1995, 9(1-5): 181-190.
doi: 10.1016/0961-9534(95)00090-9 |
[12] |
WHITTAKER C, MACALPINE W, YATES N E, et al. Dry matter losses and methane emissions during wood chip storage: The impact on full life cycle greenhouse gas savings of short rotation coppice willow for heat[J]. Bioenergy Research, 2016, 9(3): 820-835.
doi: 10.1007/s12155-016-9728-0 pmid: 32355533 |
[13] | FERRERO F, MALOW M, NOLL M, et al. Temperature and gas evolution during large scale outside storage of wood chips[J]. European Journal of Wood and Wood Products, 2011, 9(4): 587-595. |
[14] |
ANERUD E, JIRJIS R, LARSSON G, et al. Fuel quality of stored wood chips—Influence of semi-permeable covering material[J]. Applied Energy, 2018, 231: 628-634.
doi: 10.1016/j.apenergy.2018.09.157 |
[15] |
PECENKA R, LENZ H, IDKER. Influence of the chip format on the development of mass loss, moisture content and chemical composition of poplar chips during storage and drying in open-air piles[J]. Biomass and Bioenergy, 2018, 116: 140-150.
doi: 10.1016/j.biombioe.2018.06.005 |
[16] |
PARI L, BRAMBILLA M, BISAGLIA C, et al. Poplar wood chip storage: Effect of particle size and breathable covering on drying dynamics and biofuel quality[J]. Biomass and Bioenergy, 2015, 81: 282-287.
doi: 10.1016/j.biombioe.2015.07.001 |
[17] |
ALAKOSKI E, JÄMSÉN M, AGAR D, et al. From wood pellets to wood chips, risks of degradation and emissions from the storage of woody biomass—A short review[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 376-383.
doi: 10.1016/j.rser.2015.10.021 |
[18] |
HE X, LAU A K, SOKHANSANJ S, et al. Dry matter losses in combination with gaseous emissions during the storage of forest residues[J]. Fuel, 2012, 95:662-664.
doi: 10.1016/j.fuel.2011.12.027 |
[19] |
KRIGSTIN S, WETZEL S. A review of mechanisms responsible for changes to stored woody biomass fuels[J]. Fuel, 2016, 175: 75-86.
doi: 10.1016/j.fuel.2016.02.014 |
[20] |
SHENG C, YAO C. Review on self-heating of biomass materials: Understanding and description[J]. Energy & Fuels, 2022, 36(2): 731-761.
doi: 10.1021/acs.energyfuels.1c03369 |
[21] |
ROUTA J, BRÄNNSTRÖM H, LAITILA J. Effects of storage on dry matter, energy content and amount of extractives in Norway spruce bark[J]. Biomass and Bioenergy, 2020, 143: 105821.
doi: 10.1016/j.biombioe.2020.105821 |
[22] |
MANZONE M, BALSARI P, SPINELLI R. Small-scale storage techniques for fuel chips from short rotation forestry[J]. Fuel, 2013, 109: 687-692.
doi: 10.1016/j.fuel.2013.03.006 |
[23] |
WANERUD E, JIRJIS R, LARSSON G, et al. Fuel quality of stored wood chips—Influence of semi-permeable covering material[J]. Applied Energy, 2018, 231: 628-634.
doi: 10.1016/j.apenergy.2018.09.157 |
[24] |
IWAN W, PETER N, ROLF G. Influence of storage on properties of wood chip material[J]. Journal of Forest Science, 2017, 63(4): 182-191.
doi: 10.17221/46/2016-JFS |
[25] | ANERUD E, ROUTA J, BERGSTRÖM D, et al. Fuel quality of stored spruce bark—Influence of semi-permeable covering material[J]. Fuel, 2020, 279: 118-467. |
[26] | ANERUD E, BERGSTRÖM D, ROUTA J, et al. Fuel quality and dry matter losses of stored wood chips— Influence of cover material[J]. Biomass and Bioenergy, 2021, 150: 106-109. |
[27] | DUMFORT S, PECENKA R, ASHER-JENULL J, et al. The potential of calcium hydroxide to reduce storage losses: A four months monitoring study of spruce wood chip piles at industrial scale[J]. Fuel, 2021, 298: 120-738. |
[28] |
ÖHMAN M, BOMAN C, HEDMAN H, et al. Slagging tendencies of wood pellet ash during combustion in residential pellet burners[J]. Biomass and Bioenergy, 2004, 27(6): 585-596.
doi: 10.1016/j.biombioe.2003.08.016 |
[29] |
XIONG S, BURVALL J, ORBERG H, et al. Slagging characteristics during combustion of corn stovers with and without kaolin and calcite[J]. Energy & Fuels, 2008, 22(5): 3465-3470.
doi: 10.1021/ef700718j |
[30] |
XIONG S, BOZAGHIAN M, LESTANDER T A, et al. Calcium oxide as an additive for both conservation and improvement of the combustion properties of energy grass: A preliminary study[J]. Biomass and Bioenergy, 2017, 99: 1-10.
doi: 10.1016/j.biombioe.2017.02.010 |
[31] |
GREFF B, SZIGETI J, NAGY Á, et al. Influence of microbial inoculants on co-composting of lignocellulosic crop residues with farm animal manure: A review[J]. Journal of Environmental Management, 2022, 302: 114088.
doi: 10.1016/j.jenvman.2021.114088 |
[32] |
WANG J, LIU H, FU B, et al. Trophic link between syntrophic acetogens and homoacetogens during the anaerobic acidogenic fermentation of sewage sludge[J]. Biochemical Engineering Journal, 2013, 70: 1-8.
doi: 10.1016/j.bej.2012.09.012 |
[33] | MODESTR J A, NAVANEETH B, MOHAN S V. Bio-electrocatalytic reduction of CO2: Enrichment of homoacetogens and pH optimization towards enhancement of carboxylic acids biosynthesis[J]. Journal of CO2 Utilization, 2015, 10: 78-87. |
[34] |
LEHTIKANGAS P. Storage effects on pelletised sawdust, logging residues and bark[J]. Biomass and Bioenergy, 2000, 19(5): 287-293.
doi: 10.1016/S0961-9534(00)00046-5 |
[35] |
SVEDBERG U, PETRINI C, JOHANSON G. Oxygen depletion and formation of toxic gases following sea transportation of logs and wood chips[J]. Annals of Occupational Hygiene, 2009, 53(8): 779-787.
doi: 10.1093/annhyg/mep055 pmid: 19737777 |
[36] |
BOER W D, FOLMAN L B, SUMMERBELL R C, et al. Living in a fungal world: Impact of fungi on soil bacterial niche development[J]. FEMS Microbiology Reviews, 2005, 29(4): 795-811.
pmid: 16102603 |
[37] |
SVEDBERG U RA, HÖGBERG H, HöGBERG J, et al. Emission of hexanal and carbon monoxide from storage of wood pellets, a potential occupational and domestic health hazard[J]. Annals of Occupational Hygiene, 2004(4):339-349.
pmid: 15191943 |
[38] |
ARSHADI M, GELDAI P,GREF, et al. Emission of volatile aldehydes and ketones from wood pellets under controlled conditions[J]. Annals of Occupational Hygiene, 2009, 53(8): 797-805.
doi: 10.1093/annhyg/mep058 pmid: 19666956 |
[39] |
陈勇, 苏军划, 汪洋, 等. 国内二氧化碳加氢合成甲烷应用可行性分析[J]. 综合智慧能源, 2022, 44(6): 86-90.
doi: 10.3969/j.issn.2097-0706.2022.06.010 |
CHEN Yong, SU Junhua, WANG Yang, et al. Feasibility analysis on methane production by CO2 hydrogenation in China[J]. Integrated Intelligent Energy, 2022, 44(6): 86-90.
doi: 10.3969/j.issn.2097-0706.2022.06.010 |
|
[40] |
BEDANEA H, AFZALM T, SOKHANSANJS. Simulation of temperature and moisture changes during storage of woody biomass owing to weather variabilityl[J]. Biomass and Bioenergy, 2011, 35(7): 3147-3151.
doi: 10.1016/j.biombioe.2011.04.008 |
[41] |
ERGÜL E, AYRILMIS N. Effect of outdoor storage conditions of wood chip pile on the technological properties of wood-based panel[J]. Biomass and Bioenergy, 2014, 61: 66-72.
doi: 10.1016/j.biombioe.2013.11.025 |
[42] |
LI X, KOSEKI H, MOMOTA M. Evaluation of danger from fermentation-induced spontaneous ignition of wood chips[J]. Journal of Hazardous Materials, 2006, 135(1-3): 15-20.
doi: 10.1016/j.jhazmat.2005.11.034 |
[43] |
HE X, LAU A K, SOKHANSANJ S, et al. Investigating gas emissions and dry matter loss from stored biomass residues[J]. Fuel, 2014, 134:159-165.
doi: 10.1016/j.fuel.2014.05.061 |
[1] | 李菲菲, 徐绘薇, 崔金栋. 基于STIRPAT模型的吉林省石化行业碳排放影响因素研究[J]. 综合智慧能源, 2024, 46(8): 12-19. |
[2] | 李菲菲, 王舒泓, 崔金栋. 全生命周期视角下汽车产业碳排放影响因素的研究——以吉林省为例[J]. 综合智慧能源, 2024, 46(8): 20-27. |
[3] | 何方波, 裴力耕, 郑睿, 范康健, 张晓曼, 李更丰. “源网荷储”协同助力陕西省新型电力系统建设[J]. 综合智慧能源, 2024, 46(7): 40-46. |
[4] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[5] | 王京龙, 王晖, 杨野, 郑颖颖. 考虑多重不确定性的电-热-气综合能源系统协同优化方法[J]. 综合智慧能源, 2024, 46(4): 42-51. |
[6] | 苏盼盼, 王学涛, 邢利利, 李浩杰, 刘梦杰. 生物质预处理催化热解制备液体燃料研究进展[J]. 综合智慧能源, 2024, 46(3): 1-11. |
[7] | 孙健, 张云帆, 蔡潇龙, 刘鼎群. 基于预测负荷的暖通空调系统优化调度[J]. 综合智慧能源, 2024, 46(3): 12-19. |
[8] | 李成雲, 杨东升, 周博文, 杨波, 李广地. 基于数字孪生技术的新型电力系统数字化[J]. 综合智慧能源, 2024, 46(2): 1-11. |
[9] | 崔金栋, 汪羽晴. 云储能模式下用户侧储能协调优化调度机制研究[J]. 综合智慧能源, 2023, 45(9): 18-25. |
[10] | 闫丽梅, 胡汶硕. 基于复功率分布矩阵的电力系统碳流追踪方法[J]. 综合智慧能源, 2023, 45(8): 1-10. |
[11] | 胡开永, 刘峰, 吴秀杰, 胡芸清, 郑怡, 田绅. 基于Trnsys能耗预测的村镇建筑不同供能方式碳-经济分析[J]. 综合智慧能源, 2023, 45(8): 64-71. |
[12] | 李铂航, 李宏仲, 张民元. 计及负荷特性的综合能源系统低碳经济调度[J]. 综合智慧能源, 2023, 45(8): 72-79. |
[13] | 郁海彬, 高亦凌, 陆增洁, 董帅, 鲁林, 任逸之. 计及需求响应的风-火-储-碳捕集多源参与深度调峰市场的低碳经济调度[J]. 综合智慧能源, 2023, 45(8): 80-89. |
[14] | 吴彤, 王守鑫, 程星星, 刘坤坤. 工业共生体系下生物质资源化利用的物质能量流分析[J]. 综合智慧能源, 2023, 45(7): 30-39. |
[15] | 葛磊蛟, 于惟坤, 朱若源, 王关涛, 白星振. 考虑改进阶梯式碳交易机制与需求响应的综合能源系统优化调度[J]. 综合智慧能源, 2023, 45(7): 97-106. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||