综合智慧能源 ›› 2024, Vol. 46 ›› Issue (8): 67-76.doi: 10.3969/j.issn.2097-0706.2024.08.009

• 节能与环保 • 上一篇    下一篇

综合能源系统中热电联产机组故障预警现状

邓振宇1(), 汪茹康1, 徐钢1,*(), 云昆2, 王颖2   

  1. 1.华北电力大学 能源动力与机械工程学院,北京 102206
    2.北方工程设计研究院有限公司,石家庄 050011
  • 收稿日期:2023-05-22 修回日期:2023-06-08 出版日期:2024-08-25
  • 通讯作者: *徐钢(1978),男,教授,博士,从事能源系统集成、大数据分析与智能优化等方面的研究,xgncepu@163.com
  • 作者简介:邓振宇(1999),男,硕士生,从事能源系统大数据分析与智能优化等方面的研究,dengzhenyu_ncepu@163.com
  • 基金资助:
    国家自然科学基金项目(51821004)

Current status of fault diagnosis for CHP units in integrated energy systems

DENG Zhenyu1(), WANG Rukang1, XU Gang1,*(), YUN Kun2, WANG Ying2   

  1. 1. School of Energy,Power and Mechanical Engineering, North China Electric Power University,Beijing 102206,China
    2. North Engineering Design and Research Company Limited,Shijiazhuang 050011,China
  • Received:2023-05-22 Revised:2023-06-08 Published:2024-08-25
  • Supported by:
    National Natural Science Foundation of China(51821004)

摘要:

热电联产机组作为综合能源系统的重要组成部分之一,不仅承担着电能和热能的生产与传输等环节,也为系统消纳可再生能源提供了基础。风机和磨煤机作为热电联产机组的重要辅机设备,对热电联产机组的正常运行发挥着重要作用。介绍了故障预警技术背景,并对风机和磨煤机的故障类型进行了总结,随后基于人工智能算法将故障预警技术分为机器学习、深度学习和组合模型3种技术路线展开叙述。分析总结了各个技术的发展趋势和核心问题。最后对当前故障预警技术在综合能源系统中的发展应用进行了展望。

关键词: 综合能源系统, 热电联产机组, 机器学习, 组合模型, 深度学习, 故障预警, 可再生能源消纳, 磨煤机

Abstract:

As an important component of an integrated energy system, a CHP unit not only provides electric and thermal power,but also lays a foundation for renewable energy consumption. The fan and coal mill are significant devices for a cogeneration unit and play vital roles in its operation. In the research on fault diagnosis technologies,faults in fans and coal mills are summarized,and subsequently, based on artificial intelligence algorithms,the fault diagnosis technologies are categorized into three technical approaches: machine learning, deep learning, and hybrid models. The development trends and core issues of each technology are analysed. Finally, the prospects of fault diagnosis technologies applying in integrated energy systems are discussed.

Key words: integrated energy system, CHP unit, machine learning, hybrid model, deep learning, fault warning, ccommodation of renewable energy, coal mill

中图分类号: