综合智慧能源 ›› 2024, Vol. 46 ›› Issue (8): 67-76.doi: 10.3969/j.issn.2097-0706.2024.08.009
邓振宇1(), 汪茹康1, 徐钢1,*(
), 云昆2, 王颖2
收稿日期:
2023-05-22
修回日期:
2023-06-08
出版日期:
2024-08-25
通讯作者:
*徐钢(1978),男,教授,博士,从事能源系统集成、大数据分析与智能优化等方面的研究,xgncepu@163.com。作者简介:
邓振宇(1999),男,硕士生,从事能源系统大数据分析与智能优化等方面的研究,dengzhenyu_ncepu@163.com。
基金资助:
DENG Zhenyu1(), WANG Rukang1, XU Gang1,*(
), YUN Kun2, WANG Ying2
Received:
2023-05-22
Revised:
2023-06-08
Published:
2024-08-25
Supported by:
摘要:
热电联产机组作为综合能源系统的重要组成部分之一,不仅承担着电能和热能的生产与传输等环节,也为系统消纳可再生能源提供了基础。风机和磨煤机作为热电联产机组的重要辅机设备,对热电联产机组的正常运行发挥着重要作用。介绍了故障预警技术背景,并对风机和磨煤机的故障类型进行了总结,随后基于人工智能算法将故障预警技术分为机器学习、深度学习和组合模型3种技术路线展开叙述。分析总结了各个技术的发展趋势和核心问题。最后对当前故障预警技术在综合能源系统中的发展应用进行了展望。
中图分类号:
邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76.
DENG Zhenyu, WANG Rukang, XU Gang, YUN Kun, WANG Ying. Current status of fault diagnosis for CHP units in integrated energy systems[J]. Integrated Intelligent Energy, 2024, 46(8): 67-76.
表3
常见风机故障及原因
故障类型 | 可能原因 |
---|---|
轴承振动故障 | 底脚螺丝松动或混凝土基础损坏、风道损坏、轴承损坏、轴弯曲、转轴磨损、叶片磨损或积灰、叶片与外壳发生碰撞、引风机失速等 |
轴承温度异常 | 风机振动过大、风机过负荷运行时间长、润滑油系统冷却不到位、烟气温度过高、轴承冷却风机故障及备用冷却风机不联起、轴承质量差、轴承磨损严重等 |
旋转失速 | 风机振动过大、风机过负荷运行时间长、润滑油系统冷却不到位、烟气温度过高、轴承冷却风机故障及备用冷却风机不联起、轴承质量差、轴承磨损严重等 |
喘振 | 风机长期工作在低负荷、烟风道积灰堵塞、烟风道挡板开度不足等 |
动(静)叶片 调节失灵 | 风机调节传动部分内部出现故障、不完全燃烧造成动叶碳垢或灰尘堵塞,使动叶调节执行机构故障等 |
系统油压低 | 油泵故障、油泵吸入口不充满、油箱油位过低、溢流阀失灵、液压缸阀芯间隙过大或工作状况不良(排油量大)等 |
表4
传统机器学习算法
类型 | 具体算法 | 特点 |
---|---|---|
无监督学习 | K均值聚类 | 简单直观,适用于处理大规模数据,但对异常值敏感且随着数据维度的升高,性能会逐渐下降 |
高斯混合模型 | 不局限于特定的概率密度函数形式,模型的复杂度仅与所研究问题的复杂度有关,与样本集合的大小无关 | |
层次聚类 | 算法简单,实现速度快 | |
主成分分析 | 算法简单,不受参数限制 | |
多元状态估计 | 无需额外指定参数,只需参数之间相互关联即可,且无需完整的故障库,计算速度快,时效性高 | |
有监督学习 | 人工神经网络 | 非线性学习能力较强,但模型构建需要大量的数据,采用的是经验风险最小化原则,容易陷入局部极小点,而且收敛速度慢,网络结构复杂 |
支持向量机 | 适合用于小样本数据,当数据测点较多时,会出现运算效率较低问题 | |
随机森林 | 强抗噪力、可调参数少、适应力强 |
[1] | 李秋燕, 王利利, 张艺涵, 等. 能源互联网多能流的耦合模型及动态优化方法综述[J]. 电力系统保护与控制, 2020, 48(19):179-186. |
LI Qiuyan, WANG Lili, ZHANG Yihan, et al. A review of coupling models and dynamic optimization methods for energy internet multi-energy flow[J]. Power System Protection and Control, 2020, 48(19):179-186. | |
[2] | 严思韵, 王晨, 周登极. 含氢能气网掺混输运的综合能源系统优化研究[J]. 电力工程技术, 2021, 40(1):10-16,49. |
YAN Siyun, WANG Chen, ZHOU Dengji. Optimization of integrated electricity and gas system considering hydrogen-natural-gas mixture transportation[J]. Electric Power Engineering Technology, 2021, 40(1):10-16,49. | |
[3] | 孙宏斌, 潘昭光, 郭庆来. 多能流能量管理研究:挑战与展望[J]. 电力系统自动化, 2016, 40(15):1-8,16. |
SUN Hongbin, PAN Zhaoguang, GUO Qinglai. Energy management for multi-energy flow:Challenges and prospects[J]. Automation of Electric Power Systems, 2016, 40(15):1-8,16. | |
[4] | 文福拴, 鲁刚, 黄杰. 面向碳达峰、碳中和的综合能源系统[J]. 全球能源互联网, 2022, 5(2):116-117. |
WENG Fuquan, LU Gang, HUANG Jie. Integrated energy systems for carbon peaking and carbon neutrality[J]. Journal of Global Energy Interconnection, 2022, 5(2):116-117. | |
[5] | 陶光跃, 钟文琪, 陈曦, 等. 以城市热电厂为核心的综合能源系统低碳设计优化[J]. 东南大学学报(自然科学版), 2022, 52(4):631-640. |
TAO Guangyue, ZHONG Wenqi, CHEN Xi, et al. Low carbon design optimization of integrated energy system with urban thermal power plant as core[J]. Journal of Southeast University(Natural Science Edition), 2022, 52(4):631-640. | |
[6] | 吕凯文. 多源互补城市供热系统负荷调度实时优化研究[D]. 杭州: 浙江大学, 2018. |
LYU Kaiwen. Real-time load dispatch optimization of a multi-sources complementary urban heating system[D]. Hangzhou: Zhejiang University, 2018. | |
[7] | 蒲星星. 基于模型的重型燃气轮机气路故障诊断研究[D]. 北京: 清华大学, 2013. |
PU Xingxing. Model-based gas path diagnostics for heavy-duty gas turbine[D]. Beijing: Tsinghua University, 2013. | |
[8] | 王晓霞. 基于混合智能算法的热工动态过程故障诊断研究[D]. 北京: 华北电力大学, 2014. |
WANG Xiaoxia. Research on fault diagnosis of thermal dynamic process based on hybrid intelligent algorithms[D]. Beijing: North China Electric Power University, 2014. | |
[9] | 刘涛, 刘吉臻, 吕游, 等. 基于多元状态估计和偏离度的电厂风机故障预警[J]. 动力工程学报, 2016, 36(6):454-460. |
LIU Tao, LIU Jizhen, LU You, et al. Early fault warning of power plant fans based on MSET and the deviation degree[J]. Journal of Chinese Society of Power Engineering, 2016, 36(6):454-460. | |
[10] | 张海龙, 杨光锐, 井新经, 等. 中速磨煤机直吹式制粉系统节能优化研究[J]. 华电技术, 2020, 42(6):25-30. |
ZHANG Hailong, YANG Guangrui, JING Xinjing, et al. Research on energy-saving optimization for medium-speed mill pulverizing systems[J]. Huadian Technology, 2020, 42(6):25-30. | |
[11] | 安吉振, 乔世超, 陈衡, 等. 基于多元状态估计和向量相似度的电站磨煤机故障智能预警研究[J]. 热力发电, 2022, 51(12):64-71. |
AN Jizhen, QIAO Shichao, CHEN Heng, et al. Research on intelligent early warning of coal mill failure in power station based on multi-state estimation and vector similarity[J]. Thermal Power Generation, 2022, 51(12):64-71. | |
[12] | 陈波, 徐文韬, 黄亚继, 等. 基于小波包-LSTM神经网络磨煤机故障诊断[J]. 洁净煤技术, 2022, 28(5):211-220. |
CHEN Bo, XU Wentao, HUANG Yaji, et al. Fault diagnosis of coal mill based on wavelet packet-LSTM neural network[J]. Clean Coal Technology, 2022, 28(5):211-220. | |
[13] | 周浩豪, 茅大钧, 李玉珍. 基于SSAPSO-LightGBM的火电厂引风机故障预警方法[J]. 热能动力工程, 2023, 38(2):153-160. |
ZHOU Haohao, MAO Dajun, LI Yuzhen. Fault early warning method for induced draft fan in thermal power plant based on improved SSAPSO-LightGBM[J]. Journal of Engineering For Thermal Energy and Power, 2023, 38(2):153-160. | |
[14] | 杨婷婷, 张蓓, 吕游, 等. 基于MSET的电站风机故障预警技术研究[J]. 热能动力工程, 2017, 32(9):63-68,124. |
YANG Tingting, ZHANG Bei, LV You, et al. Research on early fault warning technology of fan in power plant based on MSET method[J]. Journal of Engineering for Thermal Energy&Power, 2017, 32(9):63-68,124. | |
[15] | 杨超. 热-电综合能源系统辨识与运行优化[D]. 杭州: 浙江大学, 2022. |
YANG Chao. Identification and operational optimization of integrated heat and electricity systems[D]. Hangzhou: Zhejiang University, 2022. | |
[16] | 彭宇, 刘大同. 数据驱动故障预测和健康管理综述[J]. 仪器仪表学报, 2014, 35(3):481-495. |
PENG Yu, LIU Datong. Data-driven prognostics and health management:A review of recent advances[J]. Chinese Journal of Scientific Instrument, 2014, 35(3):481-495. | |
[17] | ZONTA T, COSTA C A, ROSA R R, et al. Predictive maintenance in the Industry 4.0:A systematic literature review[J]. Computers & Industrial Engineering, 2020, 150:106889. |
[18] | 刘耘彰. 电厂风机故障诊断与预警研究[D]. 杭州: 浙江大学, 2019. |
LIU Gengzhang. Identification and operational optimization of integrated heat and electricity systems[D]. Hangzhou: Zhejiang University, 2019. | |
[19] | 刘海涛. 中速磨煤机状态监测与故障诊断方法研究[D]. 北京: 华北电力大学, 2015. |
LIU Haitao. Research on condition monitoring and fault diagnosis method of medium speed coal pulverizer[D]. Beijing: North China Electric Power University, 2015. | |
[20] | 黄鑫. 基于典型工况样本的故障预警方法研究及应用[D]. 北京: 华北电力大学, 2020. |
HUANG Xin. Research and application of early fault detection method based on typical working condition[D]. Beijing: North China Electric Power University, 2020. | |
[21] | 朱琼锋, 李家腾, 乔骥, 等. 人工智能技术在新能源功率预测的应用及展望[J]. 中国电机工程学报, 2023, 43(8):3027-3048. |
ZHU Qiongfeng, LI Jiateng, QIAO Ji, et al. Application and prospect of artificial intelligence technology in renewable energy forecasting[J]. Proceedings of the CSEE, 2023, 43(8):3027-3048. | |
[22] | 欧阳刚. 基于LS-SVM的一次风机振动在线监测及故障预警[J]. 现代电子技术, 2017, 40(7):120-123. |
OUYANG Gang. LS-SVM based online monitoring and fault warning method for primary air fan vibration[J]. Modern Electronics Technique, 2017, 40(7):120-123. | |
[23] | 刘定平, 叶向荣, 陈斌源, 等. 基于核主元分析和最小二乘支持向量机的中速磨煤机故障诊断[J]. 动力工程, 2009, 29(2):155-158. |
LIU Dingping, YE Xiangrong, CHEN Binyuan, et al. Fault diagnosis of medium speed mill based on KPCA and LSSVM[J]. Journal of Power Engineering, 2009, 29(2):155-158. | |
[24] | 韩万里, 茅大钧, 印琪民. 基于PCA和多元状态估计的引风机故障预警[J]. 热能动力工程, 2020, 35(1):91-97. |
HAN Wanli, MAO Dajun, YIN Qimin. Induced draft fan fault warning based on PCA and multivariate state estimation technique[J]. Journal of Engineering For Thermal Energy and Power, 2020, 35(1):91-97. | |
[25] | 余兴刚, 宾谊沅, 陈文, 等. 基于改进MSET的一次风机故障预警及诊断方法[J]. 机电工程, 2023, 40(4):535-541. |
YU Xinggang, CHEN Wen, et al. Early warning and diagnosis of primary fans based on improved MSET[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(4):535-541. | |
[26] | 吴涛, 王毅, 刘震, 等. 基于多元状态估计-层次分析法的磨煤机故障预警[J]. 热力发电, 2023, 52(5):14-21. |
WU Tao, WANG Yi, LIU Zhen, et al. Coal mill fault warning based on multi-state estimation-analytic hierarchy process[J]. Thermal Power Generation, 2023, 52(5):14-21. | |
[27] |
米江, 纪国宜. 改进的BP神经网络在风机故障诊断中的应用[J]. 噪声与振动控制, 2011, 31(2):94-98.
doi: 10.3969/j.issn.1006-1355-2011.02.023 |
MI Jiang, JI Guoyi. Application of improved BP neural network in fault diagnosis of fans[J]. Noise and Vibration Control, 2011, 31(2):94-98.
doi: 10.3969/j.issn.1006-1355-2011.02.023 |
|
[28] | 问姝雅, 卓旭升, 吴尔夫. 基于聚类分析的磨煤机断煤过渡状态识别[J]. 自动化与仪表, 2021, 36(11):31-34. |
WEN Shuya, ZHUO Xusheng, WU Erfu. Recognition of coal-breaking transitional state of coal mill based on cluster analysis[J]. Automation & Instrumentation, 2021, 36(11):31-34. | |
[29] |
常玉清, 赵炜炜, 刘乐源, 等. 基于实例迁移的磨煤机过程监测建模[J]. 东北大学学报(自然科学版), 2021, 42(10):1369-1375.
doi: 10.12068/j.issn.1005-3026.2021.10.001 |
CHANG Yuqing, ZHAO Weiwei, LIU Leyuan, et al. Modeling of coal mill process monitoring based on instance-based transfer learning[J]. Journal of Northeastern University( Natural Science), 2021, 42(10):1369-1375. | |
[30] | 罗婵纯, 李德忠, 杨柳, 等. 基于高斯混合模型的汽轮机转轴故障诊断方法[J]. 华电技术, 2017, 39(10):6-9,77. |
LUO Chanchun, LI Dezhong, YANG Liu, et al. Gaussian mixture model-based steam turbine shaft failure[J]. Huadian Technology, 2017, 39(10):6-9,77. | |
[31] | REZAEIANJOUYBARI B, SHANG Y. Deep learning for prognostics and health management:State of the art, challenges,and opportunities[J]. Measurement, 2020, 163:107929. |
[32] | HELBING G, RITTER M. Deep learning for fault detection in wind turbines[J]. Renewable and Sustainable Energy Reviews, 2018,98:189-198. |
[33] | 李晓彬, 牛玉广, 葛维春, 等. 基于改进堆叠自编码网络的电站辅机故障预警[J]. 仪器仪表学报, 2019, 40(6):39-47. |
LI Xiaobin, NIU Yuguang, GE Weichun, et al. Early fault warning of power plant auxiliary engine based on improved stacked autoencoder network[J]. Chinese Journal of Scientific Instrument, 2019, 40(6):39-47. | |
[34] | 刘瑶, 徐海平, 初宁, 等. 基于长短时记忆模型的风机故障诊断[J]. 工程热物理学报, 2020, 41(10):2437-2445. |
LIU Yao, XU Haiping, CHU Ning, et al. Fan fault diagnosis based on long-short term memory network[J]. Journal of Engineering Thermophysics, 2020, 41(10):2437-2445. | |
[35] | 雷萌, 吕游, 魏玮, 等. 基于LSTM神经网络与贝叶斯优化的电站风机故障预警[J]. 热能动力工程, 2022, 37(8):213-220. |
LEI Meng, LYU You, WEI Wei, et al. Fault warning of power plant fans based on Long Short-Term Memory neural network and Bayesian optimization[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(8):213-220. | |
[36] | 雷萌. 基于深度学习的电站风机故障预警研究[D]. 北京: 华北电力大学, 2021. |
LEI Meng. Research on fault warning of power station fans based on deep learning[D]. Beijing: North China Electric Power University, 2021. | |
[37] | 潘岚川. 基于卷积神经网络的一次风机故障预警研究[D]. 北京: 华北电力大学, 2021. |
PAN Fengchuan. Research on fault early marning of primary air fan based on convolution neural network[D]. Beijing: North China Electric Power University, 2021. | |
[38] |
王帝, 李治, 汪勇, 等. 基于改进最小二乘支持向量机的一次风机状态预测方法研究[J]. 动力工程学报, 2023, 43(1):74-82.
doi: 10.19805/j.cnki.jcspe.2023.01.010 |
WANG Di, LI Zhi, WANG Yong, et al. Research on state prediction method of primary air fan based on improved LSSVM[J]. Journal of Chinese Society of Power Engineering, 2023, 43(1):74-82.
doi: 10.19805/j.cnki.jcspe.2023.01.010 |
|
[39] | 张烨, 黄伟. 基于天牛群算法优化SVM的磨煤机故障诊断[J]. 机电工程, 2022, 39(3):411-418. |
ZHANG Ye, HUANG Wei. Fault diagnosis of coal mill based on BSO-SVM[J]. Journal of Mechanical & Electrical Engineering, 2022, 39(3):411-418. | |
[40] |
张航, 周传杰, 张林, 等. 基于概率神经网络-小波神经网络-DS信息融合的电厂引风机故障诊断[J]. 发电技术, 2022, 43(6):951-958.
doi: 10.12096/j.2096-4528.pgt.22162 |
ZHANG Hang, ZHOU Chuanjie, ZHANG Lin, et al. Fault diagnosis of power plant induced draft fan based on PNN-WNN-DS information fusion[J]. Power Generation Technology, 2022, 43(6):951-958.
doi: 10.12096/j.2096-4528.pgt.22162 |
|
[41] | 杨婷婷, 高乾, 李浩千, 等. 基于卷积神经网络-长短时记忆神经网络的磨煤机故障预警[J]. 热力发电, 2022, 51(10):122-129. |
YANG Tingting, GAO Qian, LI Haoqian, et al. Coal mill fault early warning technology based on CNN-LSTM network[J]. Thermal Power Generation, 2022, 51(10):122-129. | |
[42] | 孙栓柱, 江叶峰, 董顺, 等. 基于灰箱模型的中速磨煤机故障诊断方法[J]. 动力工程学报, 2018, 38(3):211-220. |
SUN Shuanzhu. JIANG Yefeng, DONG Shun, et al. Fault diagnosis of a medium-speed coal mill based on grey box model[J]. Journal of Chinese Society of Power Engineering, 2018, 38(3):211-220. | |
[43] |
田亮, 袁存波. 基于LSTM和证据理论的引风机轴承故障诊断[J]. 动力工程学报, 2023, 43(5):614-621.
doi: 10.19805/j.cnki.jcspe.2023.05.014 |
TIAN Liang, YUAN Cunbo. Fault diagnosis of induced draft fan bearing based onlstm and evidence theory[J]. Journal of Chinese Society of Power Engineering, 2023, 43(5):614-621.
doi: 10.19805/j.cnki.jcspe.2023.05.014 |
|
[44] |
杨梅, 周喜超, 魏强, 等. 考虑经济效益目标的源网荷储综合能源系统动态最优能流优化研究[J]. 综合智慧能源, 2022, 44(11):63-69.
doi: 10.3969/j.issn.2097-0706.2022.11.009 |
YANG Mei, ZHOU Xichao, WEI Qiang, et al. Study on dynamic optimal energy flow of a source-network-load-storage integrated energy system considering its economic benefit[J]. Integrated Intelligent Energy, 2022, 44(11):63-69.
doi: 10.3969/j.issn.2097-0706.2022.11.009 |
|
[45] | 刘清龙. 火电厂风机状态监测与故障诊断系统研究[D]. 武汉: 武汉大学, 2005. |
LIU Qinglong. Researeh on the monitor anddiagnosis system for the air blower of therma1 power plant[D]. Wuhan: Wuhan University, 2005. | |
[46] |
曾慧, 杜源, 李涛, 等. 考虑碳交易与绿证交易的电-热耦合园区低碳规划[J]. 综合智慧能源, 2023, 45(2): 22-29.
doi: 10.3969/j.issn.2097-0706.2023.02.003 |
ZENG Hui, DU Yuan, LI Tao, et al. Low-carbon planning of a park-level integrated electric and heating system considering carbon trading and green certificate trading[J]. Integrated Intelligent Energy, 2023, 45(2):22-29.
doi: 10.3969/j.issn.2097-0706.2023.02.003 |
[1] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[2] | 朱卫卫, 朱清, 高文森, 刘财华, 王录泽, 刘增稷. 基于5G通信时延的配电网馈线自动化切换方法[J]. 综合智慧能源, 2024, 46(5): 1-11. |
[3] | 王亮, 邓松. 面向新型电力系统的异常数据检测方法[J]. 综合智慧能源, 2024, 46(5): 12-19. |
[4] | 龚钢军, 王路遥, 常卓越, 柳旭, 邢汇笛. 基于能源枢纽的综合能源信息物理系统安全防护架构研究[J]. 综合智慧能源, 2024, 46(5): 65-72. |
[5] | 李云, 周世杰, 胡哲千, 梁均原, 肖雷鸣. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4): 1-9. |
[6] | 史明明, 朱睿, 刘瑞煌. 交直流电力系统与供热系统联合经济调度[J]. 综合智慧能源, 2024, 46(4): 10-16. |
[7] | 陈勇, 肖雷鸣, 王井南, 吴健. 基于场景扩充的低碳综合能源系统高可靠性容量规划方法[J]. 综合智慧能源, 2024, 46(4): 24-33. |
[8] | 王京龙, 王晖, 杨野, 郑颖颖. 考虑多重不确定性的电-热-气综合能源系统协同优化方法[J]. 综合智慧能源, 2024, 46(4): 42-51. |
[9] | 钟永洁, 王紫东, 左建勋, 王常青, 李靖霞, 纪陵. 计及多时段尺度与地域分层的多能互补系统经济调度[J]. 综合智慧能源, 2024, 46(4): 52-59. |
[10] | 王永旭, 周天羽, 邓庚庚, 徐钢, 王卓. 配置吸收式热泵的热电联产机组厂级智能运行优化[J]. 综合智慧能源, 2024, 46(3): 20-28. |
[11] | 徐聪, 胡永锋, 张爱平, 由长福. 基于特征筛选的综合能源系统多元负荷日前-日内预测[J]. 综合智慧能源, 2024, 46(3): 45-53. |
[12] | 任一鸣, 杜董生, 邓祥帅, 连贺, 赵哲敏. 基于GRU和GWO-KELM的电力线路故障诊断[J]. 综合智慧能源, 2024, 46(3): 54-62. |
[13] | 张力, 金立, 任炬光, 刘小兵. 计及气象因素与分时电价影响的综合能源系统负荷调控策略研究[J]. 综合智慧能源, 2024, 46(1): 18-27. |
[14] | 李方一, 李楠, 周琰, 谢武. 基于多维数据与深度学习的区域发电碳排放因子预测研究[J]. 综合智慧能源, 2023, 45(8): 11-17. |
[15] | 李铂航, 李宏仲, 张民元. 计及负荷特性的综合能源系统低碳经济调度[J]. 综合智慧能源, 2023, 45(8): 72-79. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||