综合智慧能源 ›› 2024, Vol. 46 ›› Issue (12): 45-54.doi: 10.3969/j.issn.2097-0706.2024.12.006
刘亨1(), 于洋1, 李明航1, 梁猛1, 闫霆2, 赵大周3
收稿日期:
2024-09-27
修回日期:
2024-10-21
出版日期:
2024-11-28
作者简介:
刘亨(1997),男,硕士,从事熔盐材料热物性提升方面的工作,1436016642@qq.com。基金资助:
LIU Heng1(), YU Yang1, LI Minghang1, LIANG Meng1, YAN Ting2, ZHAO Dazhou3
Received:
2024-09-27
Revised:
2024-10-21
Published:
2024-11-28
Supported by:
摘要:
目前,熔盐储热技术作为一种高效的能量存储解决方案,不仅在太阳能热发电领域得到了广泛应用,还在火电厂灵活性改造等多样化场景下应用。熔盐介质的储热性能是影响熔盐储热系统大规模商业化应用进程最关键的因素之一。纳米颗粒掺杂于熔盐体系并制备成熔盐纳米流体,是提高熔盐储热性能极有前途的方式,可以显著改善熔盐的热物理性能,如比热容、热导率和工作温度等。介绍了熔盐储热的应用背景,阐明最新的熔盐热物性的强化机理,并总结了基于分子动力学模拟对熔盐纳米流体热物性提升的机理研究。此外,重点综述了具有代表性的纳米材料掺杂熔盐提升比热容方面最新的研究进展,并对未来的研究方向和发展趋势提出展望。
中图分类号:
刘亨, 于洋, 李明航, 梁猛, 闫霆, 赵大周. 熔盐纳米流体比热容提升研究进展[J]. 综合智慧能源, 2024, 46(12): 45-54.
LIU Heng, YU Yang, LI Minghang, LIANG Meng, YAN Ting, ZHAO Dazhou. Research progress on specific heat capacity improvement of molten salt nanofluids[J]. Integrated Intelligent Energy, 2024, 46(12): 45-54.
表1
常见熔盐的性质[29]
熔盐成分 | 工作温度/℃ | 比热容/[J·(g·K)-1] | 热传导系数/[kW·(m·K)-1] | 密度/(kg·m-3) |
---|---|---|---|---|
60%NaNO3+40%KNO3 | 220~565 | 1.50 | 0.52 | 1 753 |
53%KNO3+40%NaNO2+7%NaNO3 | 142~535 | 1.40 | 0.35 | 1 723 |
15%NaNO3+43%KNO3+42%Ca(NO3)2 | 120~500 | 1.45 | 0.52 | 1 992 |
29%LiNO3+18%NaNO3+53%KNO3 | 120~540 | 1.64 | 1 780 | |
62%Li2CO3+38%K2CO3 | 400~900 | 1.60 | 1 967(577 ℃) | |
34.52%K2CO3+32.12%Li2CO3+33.36%Na2CO3 | 378~800 | 1.61 | 0.49 | 2 010(600 ℃) |
68.6%ZnCl2+7.5%NaCl+23.9%KCl | 204~850 | 0.81(300~600 ℃) | 2 000(600 ℃) | |
68.2%MgCl2+14%NaCl+17.8%KCl | 380~800 | 1.00(500~800 ℃) | ||
29%LiF+12%NaF+59%KF | 454~1 600 | 1.89 | 0.92 | 2 020 |
3.2%NaF+96.8%NaBF4 | 3 845~700 | 1.51 | 0.63 | 1 750 |
32.5%KF+67.5%ZrF4 | 390~1 450 | 1.04 | 0.32 | 2 800 |
4%NaF+27%KF+69%ZrF4 | 385 | 1.09 | 0.36 | 2 920 |
[1] |
薛福, 马晓明, 游焰军. 储能技术类型及其应用发展综述[J]. 综合智慧能源, 2023, 45(9): 48-58.
doi: 10.3969/j.issn.2097-0706.2023.09.007 |
XUE Fu, MA Xiaoming, YOU Yanjun. Energy storage technologies and their applications and development[J]. Integrated Intelligent Energy, 2023, 45(9): 48-58.
doi: 10.3969/j.issn.2097-0706.2023.09.007 |
|
[2] |
赵鑫, 钱本华, 王睿, 等. 电化学储能参与电网安全稳定控制的研究综述[J]. 综合智慧能源, 2023, 45(1):58-66.
doi: 10.3969/j.issn.2097-0706.2023.01.007 |
ZHAO Xin, QIAN Benhua, WANG Rui, et al. Review of researches on grid security and stability control with the participation of electrochemical energy storage[J]. Integrated Intelligent Energy, 2023, 45(1): 58-66.
doi: 10.3969/j.issn.2097-0706.2023.01.007 |
|
[3] | 何雅玲, 严俊杰, 杨卫卫, 等. 分布式能源系统中能量的高效存储[J]. 中国科学基金, 2020, 34(3): 272-280. |
HE Yaling, YAN Junjie, YANG Weiwei, et al. High efficient energy storage in distributed energy system[J]. Bulletin of National Natural Science Foundation of China, 2020, 34(3): 272-280. | |
[4] | ROPER R, HARKEMA M, SABHARWALL P, et al. Molten salt for advanced energy applications: A review[J]. Annals of Nuclear Energy, 2022, 169: 108924. |
[5] | 马汀山, 王妍, 吕凯, 等. “双碳” 目标下火电机组耦合储能的灵活性改造技术研究进展[J]. 中国电机工程学报, 2022, 42(S1): 136-148. |
MA Tingshan, WANG Yan, LYU Kai, et al. Research progress on flexibility transformation technology of coupled energy storage for thermal power units under the "dual-carbon" goal[J]. Proceedings of the CSEE, 2022, 42(S1): 136-148. | |
[6] |
张钟平, 刘亨, 谢玉荣, 等. 熔盐储热技术的应用现状与研究进展[J]. 综合智慧能源, 2023, 45(9): 40-47.
doi: 10.3969/j.issn.2097-0706.2023.09.006 |
ZHANG Zhongping, LIU Heng, XIE Yurong, et al. Application and research progress of molten salt heat storage technology[J]. Integrated Intelligent Energy, 2023, 45(9): 40-47.
doi: 10.3969/j.issn.2097-0706.2023.09.006 |
|
[7] | WANG B G, MA H, REN S J, et al. Effects of integration mode of the molten salt heat storage system and its hot storage temperature on the flexibility of a subcritical coal-fired power plant[J]. Journal of Energy Storage, 2023, 58: 106410. |
[8] | HAN Y, ZHANG C C, WU Y T, et al. Investigation on thermal performance of quaternary nitrate-nitrite mixed salt and solar salt under thermal shock condition[J]. Renewable Energy, 2021, 175: 1041-1051. |
[9] | 左芳菲, 韩伟, 姚明宇. 熔盐储能在新型电力系统中应用现状与发展趋势[J]. 热力发电, 2023, 52(2): 1-9. |
ZUO Fangfei, HAN Wei, YAO Mingyu. Application status and development trend of molten salt energy storage in novel power systems[J]. Thermal Power Generation, 2023, 52(2): 1-9. | |
[10] |
田禾青, 周俊杰, 郭茶秀. 熔盐储热材料比热容强化的研究进展[J]. 化工进展, 2020, 39(2): 584-595.
doi: 10.16085/j.issn.1000-6613.2019-0798 |
TIAN Heqing, ZHOU Junjie, GUO Chaxiu. Progress of specific heat enhancement of molten salt thermal energy storage materials[J]. Chemical Industry and Engineering Progress, 2020, 39(2): 584-595.
doi: 10.16085/j.issn.1000-6613.2019-0798 |
|
[11] |
熊亚选, 张慧, 吴玉庭, 等. 纳米颗粒对二元硝酸盐表面张力和密度的影响[J]. 储能科学与技术, 2021, 10(4): 1297-1304.
doi: 10.19799/j.cnki.2095-4239.2021.0112 |
XIONG Yaxuan, ZHANG Hui, WU Yuting, et al. Effect of nanoparticles on surface tension and density of binary nitrate[J]. Energy Storage Science and Technology, 2021, 10(4): 1297-1304.
doi: 10.19799/j.cnki.2095-4239.2021.0112 |
|
[12] | ALI H M, REHMAN T U, ARICI M, et al. Advances in thermal energy storage:Fundamentals and applications[J]. Progress in Energy and Combustion Science, 2024, 100: 101109. |
[13] |
吴玉庭, 明苏布道, 张灿灿, 等. 三元混合碳酸熔盐热物性实验研究[J]. 储能科学与技术, 2021, 10(4): 1292-1296.
doi: 10.19799/j.cnki.2095-4239.2021.0126 |
WU Yuting, MING Subudao, ZHANG Cancan, et al. Experimental research of the thermophysical properties of ternary mixed carbonate molten salts[J]. Energy Storage Science and Technology, 2021, 10(4): 1292-1296.
doi: 10.19799/j.cnki.2095-4239.2021.0126 |
|
[14] | WEI X L, YIN Y, QIN B, et al. Thermal conductivity improvement of liquid nitrate and darbonate salts doped with MgO particles[J]. Energy Procedia, 2017,142: 407-412. |
[15] |
张灿灿, 韩松涛, 吴玉庭, 等. 硝基熔盐纳米流体在扭曲扁管内流动与换热特性[J]. 储能科学与技术, 2022, 11(11): 3641-3648.
doi: 10.19799/j.cnki.2095-4239.2022.0356 |
ZHANG Cancan, HAN Songtao, WU Yuting, et al. Nitrate molten salt-based nanofluid flow and heat transfer characteristics in twisted tube[J]. Energy Storage Science and Technology, 2022, 11(11): 3641-3648.
doi: 10.19799/j.cnki.2095-4239.2022.0356 |
|
[16] | UEKI Y, FUJITA N, KAWAI M, et al. Thermal conductivity of molten salt-based nanofluid[J]. AIP Advances, 2017, 7(5): 055117. |
[17] | CHEN H Z, CHEN Z N, YANG H, et al. A study on quaternary mixed fluoride salts as heat storage materials[J]. Ceramics International, 2021, 47(22):32153-32159. |
[18] | YE F, GE Z W, DING Y L, et al. Multi-walled carbon nanotubes added to Na2CO3/MgO composites for thermal energy storage[J]. Particuology, 2014, 15: 56-60. |
[19] |
魏小兰, 谢佩, 张雪钏, 等. 氯化物熔盐材料的制备及其热物理性质研究[J]. 化工学报, 2020, 71(5): 2423-2431.
doi: 10.11949/0438-1157.20191541 |
WEI Xiaolan, XIE Pei, ZHANG Xuechuan, et al. Research on preparation and thermodynamic properties of chloride molten salt materials[J]. CIESC Journal, 2020, 71(5): 2423-2431. | |
[20] | UEKI Y, FUJITA N, KAWAI M, et al. Molten salt thermal conductivity enhancement by mixing nanoparticles[J]. Fusion Engineering and Design, 2018, 136: 1295-1299. |
[21] | 熊亚选, 王慧慧, 宋超宇, 等. 纳米熔盐传热储热分布均匀性研究[J]. 中国科技论文, 2022, 17(7): 823-830. |
XIONG Yaxuan, WANG Huihui, SONG Chaoyu, et al. Homogeneity of heat transfer and thermal energy storage of molten salt nanofluids[J]. China Sciencepaper, 2022, 17(7): 823-830. | |
[22] | YADAV A, VERMA A, KUMAR A, et al. Recent advances on enhanced thermal conduction in phase change materials using carbon nanomaterials[J]. Journal of Energy Storage, 2021, 43: 103173. |
[23] | WANG W, WU Z, LI B X, et al. A review on molten-salt-based and ionic-liquid-based nanofluids for medium-to-high temperature heat transfer[J]. Journal of Thermal Analysis and Calorimetry, 2019, 136(3): 1037-1051. |
[24] | ONG T C, SARVGHAD M, LIPPIATT K, et al. Review of the solubility,monitoring, and purification of impurities in molten salts for energy storage in concentrated solar power plants[J]. Renewable and Sustainable Energy Reviews, 2020, 131: 110006. |
[25] | 冷光辉, 曹惠, 彭浩, 等. 储热材料研究现状及发展趋势[J]. 储能科学与技术, 2017, 6(5): 1058-1075. |
LENG Guanghui, CAO Hui, PENG Hao, et al. The new research progress of thermal energy storage materials[J]. Energy Storage Science and Technology, 2017, 6(5): 1058-1075.
doi: 10.12028/j.issn.2095-4239.2017.00094 |
|
[26] | MOHAN G, VENKATARAMAN M B, COVENTRY J. Sensible energy storage options for concentrating solar power plants operating above 600 ℃[J]. Renewable and Sustainable Energy Reviews, 2019, 107: 319-337. |
[27] | CHEN C L, TRAN T, OLIVARES R, et al. Coupled experimental study and thermodynamic modeling of melting point and thermal stability of Li2CO3-Na2CO3-K2CO3 based salts[J]. Journal of Solar Energy Engineering, 2014, 136(3): 031017. |
[28] | SANG L X, CAI M, ZHAO Y B, et al. Mixed metal carbonates/hydroxides for concentrating solar power analyzed with DSC and XRD[J]. Solar Energy Materials and Solar Cells, 2015, 140: 167-173. |
[29] | ALJAERANI H A, SAMYKANO M, SAIDUR R, et al. Nanoparticles as molten salts thermophysical properties enhancer for concentrated solar power: A critical review[J]. Journal of Energy Storage, 2021, 44: 103280. |
[30] |
宋文兵, 鹿院卫, 陈晓彤, 等. 氯化盐/陶瓷定形复合相变材料的制备和热物性研究[J]. 储能科学与技术, 2021, 10(5): 1720-1728.
doi: 10.19799/j.cnki.2095-4239.2021.0319 |
SONG Wenbing, LU Yuanwei, CHEN Xiaotong, et al. The preparation and thermophysical properties of chloride/ceramic-shaped stabilized composite phase-change materials[J]. Energy Storage Science and Technology, 2021, 10(5): 1720-1728.
doi: 10.19799/j.cnki.2095-4239.2021.0319 |
|
[31] | MUÑOZ-SÁNCHEZ B, NIETO-MAESTRE J, IPARRAGUIRRE-TORRES I, et al. Molten salt-based nanofluids as efficient heat transfer and storage materials at high temperatures.An overview of the literature[J]. Renewable and Sustainable Energy Reviews, 2018,82: 3924-3945. |
[32] | CHOI S U S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles[J]. ASME Fed, 1995, 231: 99-105. |
[33] | SHIN D, BANERJEE D. Enhanced specific heat of silica nanofluid[J]. Journal of Heat Transfer, 2011, 133(2): 024501. |
[34] | HO M X, PAN C. Optimal concentration of alumina nanoparticles in molten Hitec salt to maximize its specific heat capacity[J]. International Journal of Heat and Mass Transfer, 2014, 70: 174-184. |
[35] | 吴玉庭, 张璐迪, 马重芳, 等. 纳米SiO2在低熔点熔盐中的分散对其比热容的影响[J]. 北京工业大学学报, 2016, 42(8): 1259-1264. |
WU Yuting, ZHANG Ludi, MA Chongfang, et al. Effect of nanoparticles dispersion on enhancing the specific heat of the low melting point salt[J]. Journal of Beijing University of Technology, 2016, 42(8): 1259-1264. | |
[36] | SHIN D, BANERJEE D. Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications[J]. International Journal of Heat and Mass Transfer, 2011, 54(5/6): 1064-1070. |
[37] | ZHANG Y, LI J L, GAO L, et al. Nitrate based nanocomposite thermal storage materials: Understanding the enhancement of thermophysical properties in thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2020, 216: 110727. |
[38] | SVOBODOVA-SEDLACKOVA A, BARRENECHE C, ALONSO G, et al. Effect of nanoparticles in molten salts-MD simulations and experimental study[J]. Renewable Energy, 2020, 152: 208-216. |
[39] | SHIN D, TIZNOBAIK H, BANERJEE D. Specific heat mechanism of molten salt nanofluids[J]. Applied Physics Letters, 2014, 104:121914. |
[40] | VAKA M, KHALID M, PAUL J. A review of different models, mechanisms, theories and parameters in tuning the specific heat capacity of nano-phase change materials[J]. Journal of Energy Storage, 2023, 72: 108678. |
[41] | DU L C, DING J, WANG W L, et al. Molecular dynamics simulations on the binary eutectic system Na2CO3-K2CO3[J]. Energy Procedia, 2017, 142: 3553-3559. |
[42] | YUAN F, LI M J, QIU Y, et al. Specific heat capacity improvement of molten salt for solar energy applications using charged single-walled carbon nanotubes[J]. Applied Energy, 2019, 250: 1481-1490. |
[43] | LIU J J, XIAO X. Molecular dynamics investigation of thermo-physical properties of molten salt with nanoparticles for solar energy application[J]. Energy, 2023, 282: 128732. |
[44] | HU Y W, HE Y R, ZHANG Z D, et al. Enhanced heat capacity of binary nitrate eutectic salt-silica nanofluid for solar energy storage[J]. Solar Energy Materials and Solar Cells, 2019, 192: 94-102. |
[45] | CUI L, YU Q S, HUANG C, et al. Nanoadditives induced enhancement of thermal energy storage properties of molten salt: insights from experiments and molecular dynamics simulations[J]. Journal of Energy Storage, 2023, 72: 108612. |
[46] | LIANG F, WEI X L, LU J F, et al. Interplay between interfacial layer and nanoparticle dispersion in molten salt nanofluid: collective effects on thermophysical property enhancement revealed by molecular dynamics simulations[J]. International Journal of Heat and Mass Transfer, 2022, 196: 123305. |
[47] | SHIN D, BANERJEE D. Enhanced specific heat capacity of nanomaterials synthesized by dispersing silica nanoparticles in eutectic mixtures[J]. Journal of Heat Transfer, 2013, 135(3): 032801. |
[48] | ABIR F M, SHIN D. Molecular dynamics study on the impact of the development of dendritic nanostructures on the specific heat capacity of molten salt nanofluids[J]. Journal of Energy Storage, 2023, 71: 107850. |
[49] | JEONG S, JO B. Understanding mechanism of enhanced specific heat of single molten salt-based nanofluids: comparison with acid-modified salt[J]. Journal of Molecular Liquids, 2021, 336: 116561. |
[50] | JEONG S, JO B. Distinct behaviors of KNO3 and NaNO3 in specific heat enhancement of molten salt nanofluid[J]. Journal of Energy Storage, 2023, 57: 106209. |
[51] | HO M X, PAN C. Experimental investigation of heat transfer performance of molten HITEC salt flow with alumina nanoparticles[J]. International Journal of Heat and Mass Transfer, 2017, 107: 1094-1103. |
[52] | KRISHNA Y, SAIDUR R, FAIZAL M, et al. Effect of Al2O3 dispersion on enthalpy and thermal stability of ternary nitrate eutectic salt[J]. International Journal of Nanoelectronics and Materials, 2020,13: 75-84. |
[53] | NAYFEH Y, RIZVI S M M, EL FAR B, et al. In situ synthesis of alumina nanoparticles in a binary carbonate salt eutectic for enhancing heat capacity[J]. Nanomaterials, 2020, 10(11): 2131. |
[54] | TAO Y B, LIN C H, HE Y L. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material[J]. Energy Conversion and Management, 2015, 97: 103-110. |
[55] | KANG Z Y, XU J M, LIU H, et al. Thermophysical properties of LiF-LiCl-Li2CO3 eutectic mixture/multi-walled carbon nanotubes for thermal energy storage[J]. Solar Energy Materials and Solar Cells, 2022,241: 111744. |
[56] | WEI X L, YIN Y, QIN B, et al. Preparation and enhanced thermal conductivity of molten salt nanofluids with nearly unaltered viscosity[J]. Renewable Energy, 2020, 145: 2435-2444. |
[57] | MADATHIL P K, BALAGI N, SAHA P, et al. Preparation and characterization of molten salt based nanothermic fluids with enhanced thermal properties for solar thermal applications[J]. Applied Thermal Engineering, 2016, 109: 901-905. |
[58] | LIU M, SEVERINO J, BRUNO F, et al. Experimental investigation of specific heat capacity improvement of a binary nitrate salt by addition of nanoparticles/microparticles[J]. Journal of Energy Storage, 2019, 22: 137-143. |
[1] | 赵大周, 谢玉荣, 张钟平, 邓睿锋, 刘丽丽. 300 MW燃煤供热机组熔盐储热系统设计及经济性分析[J]. 综合智慧能源, 2024, 46(9): 45-52. |
[2] | 李博, 曹越, 徐景怡, 司风琪. 考虑火电-熔盐储热耦合特性的风光火储能源调度[J]. 综合智慧能源, 2024, 46(12): 55-63. |
[3] | 张晓盼,鹿院卫*,于强,宋维龙,吴玉庭. 超声-微波法制备熔盐纳米复合材料试验研究[J]. 华电技术, 2020, 42(4): 12-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||