综合智慧能源

• •    

基于模型预测控制的风电场有功功率波动抑制优化方法研究

魏赏赏, 秦晓栋, 宋瑞军, 吕杰, 周文奇, 邵贤杰   

  1. 河海大学新能源学院,
    内蒙古电力集团经济技术研究有限责任公司, 内蒙古自治区 中国
  • 收稿日期:2025-02-12 修回日期:2025-03-09
  • 基金资助:
    常州市科技应用基础研究项目(CJ20240095); 国家自然科学基金联合基金项目(No. U22B20112); 国家自然科学基金青年基金项目(52406233)

Optimization Method for Active Power Fluctuation Mitigation of Wind Farms Based on Model Predictive Control

  1. , ,
    , , China
  • Received:2025-02-12 Revised:2025-03-09
  • Supported by:
    Changzhou Science and Technology Application Basic Research Project under Grant(CJ20240095); National Natural Science Foundation of China(No. U22B20112); National Natural Science Foundation of China(52406233)

摘要: 风电机组空间分散性以及风速固有不确定性,导致风电场出力具有强波动性,这种波动性抑制了风电场电网友好运行能力。为此,本文提出一种基于模型预测控制(MPC)与尾流效应耦合的风电场波动抑制优化方法。具体地,本文采用坐标变换法构建了不同风速大小与方向下风电场有功功率出力预测模型,之后基于该预测模型结合最小二乘支持向量机(LS-SVM)风速预测,首次在模型预测控制框架中集成尾流效应、风向偏差及机组约束的多维耦合优化目标,求解考虑风电场有功功率出力方差的优化问题。案例仿真表明,本文所提方法较比例分配法,有功功率平均相对偏差与均方根偏差均降低了约90%,验证了多维耦合模型对波动抑制的有效性。

关键词: 风电场, 尾流调控, 波动抑制, 模型预测, 有功功率

Abstract: The spatial distribution of wind turbines and the inherent uncertainty of wind speed led to strong fluctuations in wind farm active power, and such fluctuations deteriorate the grid-friendly operation performance of wind farms. To this end, this paper proposes an optimization method for suppressing wind farm fluctuations based on Model Predictive Control (MPC) coupled with wake interactions. Specifically, this paper leverages the coordinate transformation method to predict the active power of a wind farm for different wind speed magnitudes and directions. Subsequently, based on this prediction model and combined with wind speed forecasting using Least Squares Support Vector Machine (LS-SVM), this study integrates wake effects, wind direction deviations, and unit constraints into a multi-dimensional coupling optimization objective within the MPC framework for the first time. The optimization problem considers the variance of the wind farm's active power output. The case study shows that the average relative error and root mean square error of active power are both reduced about 90% compared with the proportional distribution method, thereby validating the effectiveness of the multi-dimensional coupling model in suppressing fluctuations.

Key words: wind farm, wake control, fluctuation alleviation, model predictive, active power