综合智慧能源

• •    

基于YOLOv5与ORB-SLAM融合的变电站动态场景特征点筛选算法改进

何龙庆, 李小勇, 石鑫, 姜寒, 李玉强, 王永君, 王凯   

  1. 青岛大学电气工程学院, 山东 266071 中国
    山东广域科技有限责任公司技术部, 山东 257000 中国
    国家电投东北电力有限公司抚顺热电分公司, 山东 113010 中国
    青岛海尔智能技术研发有限公司, 山东 266101 中国
  • 收稿日期:2025-09-15 修回日期:2025-11-17
  • 基金资助:
    中央引导地方科技发展资金项目(YDZX2024060)

Improvement of Dynamic Scene Feature Point Screening Algorithm for Substations Based on the Fusion of YOLOv5 and ORB-SLAM

  1. , 266071, China
    , 257000, China
    , 113010, China
    , 266101, China
  • Received:2025-09-15 Revised:2025-11-17

摘要: 针对变电站复杂动态工况下智能巡检机器人定位建图精度衰减问题,提出了一种融合改进CA-YOLOv5目标检测的增强型SLAM架构。采用多模态注意力机制优化CA-YOLOv5网络,构建动态目标实时识别框架;通过语义-几何联合约束策略,在特征匹配阶段建立动态区域掩膜与运动概率模型;设计基于时空一致性的动态特征过滤算法,在BA优化环节实现动态干扰源的精准剔除与静态场景结构的有效保留。在公开数据集与真实动态场景中的对比实验表明,改进系统将动态环境下的定位误差降低43.7%,地图重建完整度提升41.5%,同时维持良好的实时处理性能。该融合框架有效解决了动态元素导致的误匹配与地图污染问题,本方案有效克服变电站典型动态干扰,为巡检机器人、自动驾驶等领域的空间感知提供了可靠的技术支撑。

关键词: ORB-SLAM3, YOLO, 智能巡检, 传感器识别, 动态剔除

Abstract: Aiming at the problem of accuracy attenuation of intelligent inspection robot positioning and mapping under complex dynamic working conditions of substation, an enhanced SLAM architecture based on improved CA-YOLOv5 target detection is proposed. The multi-modal attention mechanism was used to optimize the CA-YOLOv5 network to construct a real-time dynamic target recognition framework. Through the semantic-geometric joint constraint strategy, the dynamic region mask and motion probability model are established in the feature matching stage. A dynamic feature filtering algorithm based on spatio-temporal consistency is designed to achieve the accurate elimination of dynamic interference sources and the effective retention of static scene structure in the BA optimization step. The comparison experiments between the public data set and the real dynamic scene show that the improved system reduces the positioning error by 43.7% in dynamic environment, and improves the completeness of map reconstruction by 41.5%, while maintaining good real-time processing performance. The fusion framework effectively solves the problem of mismatching and map pollution caused by dynamic elements. The scheme effectively overcomes the typical dynamic interference of substations, and provides reliable technical support for spatial perception in inspection robots, automatic driving and other fields.

Key words: ORB-SLAM3, YOLO, Intelligent inspection, Sensor recognition, Dynamic culling