综合智慧能源 ›› 2025, Vol. 47 ›› Issue (12): 1-13.doi: 10.3969/j.issn.2097-0706.2025.12.001
• 储能技术 • 下一篇
耿博辰1(
), 石鑫2(
), 熊亚选1,*(
), 蒋泽龄1(
)
收稿日期:2025-03-07
修回日期:2025-04-25
出版日期:2025-12-25
通讯作者:
* 熊亚选(1977),男,教授,博士,从事低碳储能和供热系统精准节能方面的研究,xiongyaxuan@bucea.edu.cn。作者简介:耿博辰(2002),男,硕士生,从事热化学储热方面的研究,1289206937@qq.com;基金资助:
GENG Bochen1(
), SHI Xin2(
), XIONG Yaxuan1,*(
), JIANG Zeling1(
)
Received:2025-03-07
Revised:2025-04-25
Published:2025-12-25
Supported by:摘要:
综述了钙循环热化学储热技术的研究进展,重点分析了钙基材料的物化特性、改性方法、反应器设计及系统集成的研究现状。介绍了钙基材料的主要类型,包括天然钙基材料、化学合成钙基材料、掺杂钙基材料、复合钙基材料等,详细讨论了其物理特性(颗粒尺寸、比表面积、孔隙结构、热导率和机械强度)和化学特性对储热性能的影响。对钙基材料的物化特性进行了深入探讨,指出其对储热效率和循环稳定性具有显著影响。介绍了钙基材料的改性方法,包括物理改性和化学改性,其中物理改性涉及颗粒尺寸控制和载体添加,而化学改性包括掺杂金属氧化物和表面涂层。通过这些方法,可显著提升钙基材料的循环稳定性和抗烧结性。接着,讨论了钙循环储热反应器及系统的设计与优化,包括固定床、流化床和其他新型反应器。这些反应器在传热传质效率、颗粒损耗平衡及系统集成灵活性方面具有各自的优势和挑战。对不同反应器与系统集成的协同效应进行分析,进一步探讨了钙循环储热技术的储热密度、机械强度优势及当前面临的材料失活、系统效率和经济性等挑战。对未来研究方向进行展望,指出需进一步开发高稳定性材料、优化反应器设计并进行全生命周期经济分析,以推动钙循环储热技术的商业化应用。
中图分类号:
耿博辰, 石鑫, 熊亚选, 蒋泽龄. 热化学储热钙循环改性强化研究进展[J]. 综合智慧能源, 2025, 47(12): 1-13.
GENG Bochen, SHI Xin, XIONG Yaxuan, JIANG Zeling. Research progress on modification methods for calcium looping thermochemical heat storage[J]. Integrated Intelligent Energy, 2025, 47(12): 1-13.
| [1] |
张冬冬, 单琳珂, 刘天皓. 人工智能技术在风力与光伏发电数据挖掘及功率预测中的应用综述[J]. 综合智慧能源, 2025, 47(3): 32-46.
doi: 10.3969/j.issn.2097-0706.2025.03.004 |
|
ZHANG Dongdong, SHAN Linke, LIU Tianhao. Review on the application of artificial intelligence in data mining and wind and photovoltaic power forecasting[J]. Integrated Intelligent Energy, 2025, 47(3): 32-46.
doi: 10.3969/j.issn.2097-0706.2025.03.004 |
|
| [2] |
张金平, 周强, 王定美, 等. 太阳能光热发电技术及其发展综述[J]. 综合智慧能源, 2023, 45(2): 44-52.
doi: 10.3969/j.issn.2097-0706.2023.02.006 |
|
ZHANG Jinping, ZHOU Qiang, WANG Dingmei, et al. Review on solar thermal power generation technologies and their development[J]. Integrated Intelligent Energy, 2023, 45(2): 44-52.
doi: 10.3969/j.issn.2097-0706.2023.02.006 |
|
| [3] |
GAO Y, GAO X, ZHANG X H. The 2 ℃ global temperature target and the evolution of the long-term goal of addressing climate change: From the united nations framework convention on climate change to the paris agreement[J]. Engineering, 2017, 3(2): 272-278.
doi: 10.1016/J.ENG.2017.01.022 |
| [4] | 张立麒, 罗聪, 代金雨. 热化学储热技术在可再生能源中的应用前景[J]. 煤气与热力, 2024, 44(8):1-10. |
| ZHANG Liqi, LUO Cong, DAI Jinyu. Application prospects of thermochemical heat storage technology in renewable energy[J]. Gas & Heat, 2024, 44(8): 1-10. | |
| [5] | 陈惠超, 王芳, 赵伶玲, 等. 粉煤灰改性钙基吸收剂循环碳酸化实验研究[J]. 中国电机工程学报, 2015, 35(20): 5251-5257. |
| CHEN Huichao, WANG Fang, ZHAO Lingling, et al. Study on cyclic carbonation property of CaO-based sorbents modified with fly ash[J]. Proceedings of the CSEE, 2015, 35(20): 5251-5257. | |
| [6] |
LIU X, YI H H, TANG X L, et al. Effects of preparation conditions on the performance of simultaneous desulfurization and denitrification over Ni/Fe hydrotalcite-like compounds[J]. Energy and Fuels, 2016, 30(3): 2295-2301.
doi: 10.1021/acs.energyfuels.5b02645 |
| [7] |
ZENG P X, ZHAO C W, WANG X M, et al. One-step synthesis of structurally improved, Al2O3-supported K2CO3 pellets via graphite-casting method for low-temperature CO2 capture[J]. Separation and Purification Technology, 2022, 292: 120929.
doi: 10.1016/j.seppur.2022.120929 |
| [8] |
WANG K, YIN Z G, ZHAO P F. Synthesis of macroporous Li4SiO4 via a citric acid-based sol-gel route coupled with carbon coating and its CO2 chemisorption properties[J]. Ceramics International, 2016, 42(2): 2990-2999.
doi: 10.1016/j.ceramint.2015.10.083 |
| [9] |
BU C, GÓMEZ-BAREA A, LECKNER B, et al. Oxy-fuel conversion of sub-bituminous coal 9 particles in fluidized bed and pulverized combustors[J]. Proceedings of the Combustion Institute, 2017, 36(3):3331-3339.
doi: 10.1016/j.proci.2016.08.075 |
| [10] | 张中华. 粉煤灰制备吸附剂捕集CO2的研究[J]. 中国电机工程学报, 2021, 41(4): 1227-1233, 1529. |
| ZHANG Zhonghua. Development of fly-ash-based sorbents for CO2 capture[J]. Proceedings of the CSEE, 2021, 41(4): 1227-1233, 1529. | |
| [11] |
DIEGO M E, ARIAS B, ABANADES J C. Evolution of the CO2 carrying capacity of CaO particles in a large calcium looping pilot plant[J]. International Journal of Greenhouse Gas Control, 2017, 62: 69-75.
doi: 10.1016/j.ijggc.2017.04.005 |
| [12] |
YANG H Q, XU Z H, FAN M H, et al. Progress in carbon dioxide separation and capture: A review[J]. Journal of Environmental Sciences, 2008, 20(1): 14-27.
pmid: 18572517 |
| [13] |
ADANEZ J, ABAD A, GARCIA-LABIANO F, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2): 215-282.
doi: 10.1016/j.pecs.2011.09.001 |
| [14] |
TONG X L, LIU W Q, YANG Y D, et al. A semi-industrial preparation procedure of CaO-based pellets with high CO2 uptake performance[J]. Fuel Processing Technology, 2019, 193: 149-158.
doi: 10.1016/j.fuproc.2019.05.018 |
| [15] | 陈强, 李娜, 刘敏. 钙循环热化学储热技术的系统设计与反应器优化[J]. 煤气与热力, 2023, 44(3):1-10. |
| CHEN Qiang, LI Na, LIU Min. System design and reactor optimization of calcium looping thermochemical heat storage technology[J]. Gas & Heat, 2023, 44(3): 1-10. | |
| [16] |
NAGUMO R, MURAKI Y, IWATA S, et al. Molecular dynamics simulation study on CO2 physical absorption mechanisms for ethylene-glycol-based solvents using free energy calculations[J]. Industrial and Engineering Chemistry Research, 2016, 55(29): 8200-8206.
doi: 10.1021/acs.iecr.6b01074 |
| [17] | 孙健. 高钙废弃物衍生吸收剂脱碳性能及其成型改性机制的研究[D]. 武汉: 华中科技大学, 2017. |
| SUN Jian. Investigation on CO2 capture properties and pelletization modification mechanism of CaO-based sorbent derived from calcium-rich wastes[D]. Wuhan: Huazhong University of Science and Technology, 2017. | |
| [18] |
CHEN J, DUAN L B, SUN Z K. Review on the development of sorbents for calcium looping[J]. Energy and Fuels, 2020, 34(7): 7806-7836.
doi: 10.1021/acs.energyfuels.0c00682 |
| [19] | 夏伟, 黄芳, 王梅, 等. 纳米级碳酸钙煅烧分解特性研究[J]. 江汉大学学报(自然科学版), 2019, 47(1): 12-17. |
| XIA Wei, HUANG Fang, WANG Mei, et al. Characteristics of calcination decomposition of nanoscale calcium carbonate[J]. Journal of Jianghan University (Natural Science Edition), 2019, 47(1): 12-17. | |
| [20] | 郭智, 张新妙, 章晨林, 等. 膜分离法分离烟气中CO2材料及应用研究进展[J]. 现代化工, 2016, 36(6): 42-45, 47. |
| GUO Zhi, ZHANG Xinmiao, ZHANG Chenlin, et al. Research development of membrane materials for separation of CO2 from flue gas[J]. Modern Chemical Industry, 2016, 36(6): 42-45, 47. | |
| [21] | 王俊杰, 颜碧兰, 汪澜, 等. 高温悬浮态下碳酸钙分解反应动力学的研究[J]. 武汉理工大学学报, 2013, 35(5): 41-44. |
| WANG Junjie, YAN Bilan, WANG Lan, et al. Research on the decomposing kinetics of calcium carbonate under high temperature and suspension state[J]. Journal of Wuhan University of Technology, 2013, 35(5): 41-44. | |
| [22] | 仝宇, 王瑞, 徐琳, 等. 硫酸法钛白副产钛石膏中碳酸钙分析方法的研究及应用[J]. 涂层与防护, 2022, 43(10): 7-11. |
| TONG Yu, WANG Rui, XU Lin, et al. Determination of CaCO3 in titanium gypsum from sulfate TiO2 process[J]. Coating and Protection, 2022, 43(10): 7-11. | |
| [23] |
CAI J Z, LI Z S. First principle-based rate equation theory for the calcination kinetics of CaCO3 in calcium looping[J]. Energy and Fuels, 2024, 38(9): 8145-8156.
doi: 10.1021/acs.energyfuels.4c00877 |
| [24] |
LI J, ZHANG H D, GAO Z P, et al. CO2 capture with chemical looping combustion of gaseous fuels: An overview[J]. Energy and Fuels, 2017, 31(4): 3475-3524.
doi: 10.1021/acs.energyfuels.6b03204 |
| [25] |
MØLLER K T, IBRAHIM A, BUCKLEY C E, et al. Inexpensive thermochemical energy storage utilising additive enhanced limestone[J]. Journal of Materials Chemistry A, 2020, 8(19): 9646-9653.
doi: 10.1039/D0TA03080E |
| [26] |
GRASA G, MURILLO R, ALONSO M, et al. Application of the random pore model to the carbonation cyclic reaction[J]. AIChE Journal, 2009, 55(5): 1246-1255.
doi: 10.1002/aic.v55:5 |
| [27] | 周韦慧, 陈乐怡. 国外二氧化碳减排技术措施的进展[J]. 中外能源, 2008, 13(3): 7-13. |
| ZHOU Weihui, CHEN Leyi. Progress of CO2 emission reduction technologies and measures abroad[J]. Sino-Global Energy, 2008, 13(3): 7-13. | |
| [28] |
COOK T R, DOGUTAN D K, REECE S Y, et al. Solar energy supply and storage for the legacy and nonlegacy worlds[J]. Chemical Reviews, 2010, 110(11): 6474-6502.
doi: 10.1021/cr100246c pmid: 21062098 |
| [29] |
MANOVIC V, LU D, ANTHONY E J. Steam hydration of sorbents from a dual fluidized bed CO2 looping cycle reactor[J]. Fuel, 2008, 87(15/16): 3344-3352.
doi: 10.1016/j.fuel.2008.04.035 |
| [30] |
MARTÍNEZ I, GRASA G, MURILLO R, et al. Evaluation of CO2 carrying capacity of reactivated CaO by hydration[J]. Energy and Fuels, 2011, 25(3): 1294-1301.
doi: 10.1021/ef1015582 |
| [31] |
CAI J Z, LI Z S. First principle-based rate equation theory for the carbonation kinetics of CaO with CO2 in calcium looping[J]. Chemical Engineering Journal, 2024, 479: 147484.
doi: 10.1016/j.cej.2023.147484 |
| [32] |
UÇURUM M, ÖZDEMIR A, TEKE Ç. Optimization of surface modification parameters of fly ash with high calcium oxide (CaO) content to use as a filling material[J]. Powder Technology, 2025, 451: 120463.
doi: 10.1016/j.powtec.2024.120463 |
| [33] |
YOON H J, LEE K B. Introduction of chemically bonded zirconium oxide in CaO-based high-temperature CO2 sorbents for enhanced cyclic sorption[J]. Chemical Engineering Journal, 2019, 355: 850-857.
doi: 10.1016/j.cej.2018.08.148 |
| [34] |
CHEN Z X, LIM C J, GRACE J R. Study of limestone particle impact attrition[J]. Chemical Engineering Science, 2007, 62(3): 867-877.
doi: 10.1016/j.ces.2006.10.022 |
| [35] |
SCALA F, SALATINO P, BOEREFIJN R, et al. Attrition of sorbents during fluidized bed calcination and sulphation[J]. Powder Technology, 2000, 107(1/2): 153-167.
doi: 10.1016/S0032-5910(99)00185-0 |
| [36] |
KURLOV A, ARMUTLULU A, DONAT F, et al. CaO-based CO2 sorbents with a hierarchical porous structure made via microfluidic droplet templating[J]. Industrial and Engineering Chemistry Research, 2020, 59(15): 7182-7188.
doi: 10.1021/acs.iecr.9b05996 |
| [37] | 王长清, 曾鹏鑫, 张禹, 等. 惰性载体对钙基吸附剂脱碳性能增强作用的研究进展[J]. 中国电机工程学报, 2024, 44(22): 8936-8948. |
| WANG Changqing, ZENG Pengxin, ZHANG Yu, et al. Research progress on enhancement of decarburization performance of calcium-based adsorbents by inert supporting[J]. Proceedings of the CSEE, 2024, 44(22): 8936-8948. | |
| [38] |
CHEN H C, ZHAO C S, CHEN M L, et al. CO2 uptake of modified calcium-based sorbents in a pressurized carbonation-calcination looping[J]. Fuel Processing Technology, 2011, 92(5): 1144-1151.
doi: 10.1016/j.fuproc.2011.01.011 |
| [39] |
YAO X, ZHANG H, YANG H R, et al. An experimental study on the primary fragmentation and attrition of limestones in a fluidized bed[J]. Fuel Processing Technology, 2010, 91(9): 1119-1124.
doi: 10.1016/j.fuproc.2010.03.025 |
| [40] |
SCALA F, MONTAGNARO F, SALATINO P. Attrition of limestone by impact loading in fluidized beds[J]. Energy & fuels, 2007, 21(5): 2566-2572.
doi: 10.1021/ef0700580 |
| [41] | 李英杰, 赵长遂, 段伦博, 等. 钾钠盐类对钙基CO2吸附剂循环碳酸化的影响[J]. 中国电机工程学报, 2009, 29(2): 52-57. |
| LI Yingjie, ZHAO Changsui, DUAN Lunbo, et al. Effect of potassium and sodium salts on cyclic carbonation of calcium-based CO2 sorbent[J]. Proceedings of the CSEE, 2009, 29(2): 52-57. | |
| [42] | 罗聪, 郑瑛, 吴琪珑, 等. 新型CaO/MgO高温CO2吸收剂的循环反应特性[J]. 工程热物理学报, 2011, 32(11): 1957-1960. |
| LUO Cong, ZHENG Ying, WU Qilong, et al. Cyclic reaction characters of novel CaO/MgO high temperature CO2 sorbents[J]. Journal of Engineering Thermophysics, 2011, 32(11): 1957-1960. | |
| [43] |
CHEN H C, ZHAO C S, LI Y J, et al. CO2 capture performance of calcium-based sorbents in a pressurized carbonation/calcination loop[J]. Energy and Fuels, 2010, 24(10): 5751-5756.
doi: 10.1021/ef100565d |
| [44] |
SUN R Y, LI Y J, LIU H L, et al. CO2 capture performance of calcium-based sorbent doped with manganese salts during calcium looping cycle[J]. Applied Energy, 2012, 89(1): 368-373.
doi: 10.1016/j.apenergy.2011.07.051 |
| [45] |
SAKELLARIOU K G, KARAGIANNAKIS G, CRIADO Y A, et al. Calcium oxide based materials for thermochemical heat storage in concentrated solar power plants[J]. Solar Energy, 2015, 122: 215-230.
doi: 10.1016/j.solener.2015.08.011 |
| [46] | SAKELLARIOU K G, TSONGIDIS N I, KARAGIANNAKIS G, et al. Development and evaluation of materials for thermochemical heat storage based on the CaO/CaCO3 reaction couple[C]// AIP Conference Proceedings. AIP Publishing LLC, 2016, 1734(1): 050040. |
| [47] |
AIHARA M, NAGAI T, MATSUSHITA J, et al. Development of porous solid reactant for thermal-energy storage and temperature upgrade using carbonation/decarbonation reaction[J]. Applied Energy, 2001, 69(3): 225-238.
doi: 10.1016/S0306-2619(00)00072-6 |
| [48] |
LI Y J, ZHAO C S, CHEN H C, et al. Modified CaO-based sorbent looping cycle for CO2 mitigation[J]. Fuel, 2009, 88(4): 697-704.
doi: 10.1016/j.fuel.2008.09.018 |
| [49] |
VALVERDE J M, SANCHEZ-JIMENEZ P E, PEREJON A, et al. Constant rate thermal analysis for enhancing the long-term CO2 capture of CaO at Ca-looping conditions[J]. Applied Energy, 2013, 108: 108-120.
doi: 10.1016/j.apenergy.2013.03.013 |
| [50] |
MOHAMED B M, SHARP J H. Kinetics and mechanism of formation of tricalcium aluminate,Ca3Al2O6[J]. Thermochimica Acta, 2002, 388(1/2): 105-114.
doi: 10.1016/S0040-6031(02)00035-7 |
| [51] |
RUSZAK M, WITKOWSKI S, PIETRZYK P, et al. The role of intermediate calcium aluminate phases in solid state synthesis of mayenite (Ca12Al14O33)[J]. Functional Materials Letters, 2011, 4(2): 183-186.
doi: 10.1142/S1793604711001907 |
| [52] |
RIVAS MERCURY J M, DE AZA A H, TURRILLAS X, et al. The synthesis mechanism of Ca3Al2O6 from soft mechanochemically activated precursors studied by time-resolved neutron diffraction up to 1 000 ℃[J]. Journal of Solid State Chemistry, 2004, 177(3): 866-874.
doi: 10.1016/j.jssc.2003.09.022 |
| [53] |
YAN J, ZHAO C Y. Experimental study of CaO/Ca(OH)2 in a fixed-bed reactor for thermochemical heat storage[J]. Applied Energy, 2016, 175: 277-284.
doi: 10.1016/j.apenergy.2016.05.038 |
| [54] |
YAN J, ZHAO C Y. Thermodynamic and kinetic study of the dehydration process of CaO/Ca(OH)2 thermochemical heat storage system with Li doping[J]. Chemical Engineering Science, 2015, 138: 86-92.
doi: 10.1016/j.ces.2015.07.053 |
| [55] |
ÁLVAREZ CRIADO Y, ALONSO M, ABANADES J C. Composite material for thermochemical energy storage using CaO/Ca(OH)2[J]. Industrial and Engineering Chemistry Research, 2015, 54(38): 9314-9327.
doi: 10.1021/acs.iecr.5b02688 |
| [56] |
ROßKOPF C, AFFLERBACH S, SCHMIDT M, et al. Investigations of nano coated calcium hydroxide cycled in a thermochemical heat storage[J]. Energy Conversion and Management, 2015, 97: 94-102.
doi: 10.1016/j.enconman.2015.03.034 |
| [57] |
LI Z Y, LI L R, LI S, et al. Enhanced thermochemical heat storage performance of CaO/CaCO3 via pyroligneous acid impregnation and Co/Mn co-doping[J]. Chemical Engineering Journal, 2024, 501: 157618.
doi: 10.1016/j.cej.2024.157618 |
| [58] |
ZHANG Y N, WANG R Z. Sorption thermal energy storage: Concept, process, applications and perspectives[J]. Energy Storage Materials, 2020, 27: 352-369.
doi: 10.1016/j.ensm.2020.02.024 |
| [59] | TIAN X K, GUO S J, JIANG L, et al. Thermochemical energy storage in a fixed-bed reactor using CaCO3/CaO:Integrated operation and efficiency analysis[J]. Energy, 2024:130867. |
| [60] | HU Q L, JIANG Y F, WANG Z J. Thermochemical heat storage performance of CaO after CO2 capture in calcium looping[J]. Chemical Engineering Journal, 2025:1230. |
| [61] |
LI W, KLEMEŠ J J, WANG Q W, et al. Salt hydrate-based gas-solid thermochemical energy storage:Current progress,challenges,and perspectives[J]. Renewable and Sustainable Energy Reviews, 2022, 154:111846.
doi: 10.1016/j.rser.2021.111846 |
| [62] |
FARCOT L, LE PIERRÈS N, FOURMIGUÉ J F. Experimental investigation of a moving-bed heat storage thermochemical reactor with SrBr2/H2O couple[J]. Journal of Energy Storage, 2019, 26: 101009.
doi: 10.1016/j.est.2019.101009 |
| [63] |
姚亮, 贺楠, 陈奇成. 氧化钙基多级孔隙结构储热模块的制备及其储热性能[J]. 储能科学与技术, 2024, 13(12): 4282-4289.
doi: 10.19799/j.cnki.2095-4239.2024.0863 |
|
YAO Liang, HE Nan, CHEN Qicheng. Preparation and thermal storage properties of CaO-based thermal storage module with a hierarchically porous structure[J]. Energy Storage Science and Technology, 2024, 13(12): 4282-4289.
doi: 10.19799/j.cnki.2095-4239.2024.0863 |
|
| [64] |
WU H Z, LUO C, LUO T, et al. Review of solar thermochemical heat storage equipment and systems based on calcium-looping[J]. Journal of Energy Storage, 2024, 103: 114146.
doi: 10.1016/j.est.2024.114146 |
| [65] |
丁扬, 王翰文, 陆文杰, 等. 基于热泵储电的绝热钙循环卡诺电池系统特性及优化研究[J]. 储能科学与技术, 2024, 13(12): 4247-4258.
doi: 10.19799/j.cnki.2095-4239.2024.0918 |
|
DING Yang, WANG Hanwen, LU Wenjie, et al. Characteristics and optimization study of an adiabatic calooping carnot battery system based on pumped thermal electricity storage[J]. Energy Storage Science and Technology, 2024, 13(12): 4247-4258.
doi: 10.19799/j.cnki.2095-4239.2024.0918 |
|
| [66] |
EDWARDS S E B, MATERIĆ V. Calcium looping in solar power generation plants[J]. Solar Energy, 2012, 86(9): 2494-2503.
doi: 10.1016/j.solener.2012.05.019 |
| [67] |
CHACARTEGUI R, ALOVISIO A, ORTIZ C, et al. Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle[J]. Applied Energy, 2016, 173: 589-605.
doi: 10.1016/j.apenergy.2016.04.053 |
| [68] |
沈明忠, 胡小夫, 沈建永, 等. 基于燃煤机组掺烧绿氨的碳减排量分析研究[J]. 综合智慧能源, 2024, 46(10): 67-72.
doi: 10.3969/j.issn.2097-0706.2024.10.009 |
|
SHEN Mingzhong, HU Xiaofu, SHEN Jianyong, et al. Analysis and research on carbon emission reduction from co-firing green ammonia in coal-fired power plants[J]. Integrated Intelligent Energy, 2024, 46(10): 67-72.
doi: 10.3969/j.issn.2097-0706.2024.10.009 |
| [1] | 黄梓琪, 吴志聪, 徐钢, 葛士宇, 陈衡. 基于甲醇合成与燃气轮机联合循环的联产系统优化分析[J]. 综合智慧能源, 2025, 47(10): 60-68. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||

