综合智慧能源

• •    

基于Res-MobileCom并行网络的光伏发电功率等级分类

殷林飞, 周扬钢   

  1. 广西大学, 广西壮族自治区 530004 中国
  • 收稿日期:2025-07-28 修回日期:2025-09-12
  • 基金资助:
    国家自然科学基金(62463001)

Classification of photovoltaic power generation levels based on the res-mobilecom parallel network

  1. , 530004, China
  • Received:2025-07-28 Revised:2025-09-12
  • Supported by:
    National Natural Science Foundation of China(62463001)

摘要: 为了提高光伏发电功率等级分类准确性以适应行业要求,本文提出了一种基于Res-MobileCom并行网络的分类模型。在数据处理中使用去归一化的双线性插值法最大程度上保留数据特征,然后通过简化Resnet和Mobilenet结构,并行训练后将其输出联合输入到Com网络中进一步提取数据特征,最终得到分类结果。实验证明,本文提出的模型相比于常见深度学习模型,保持了Resnet和Mobilenet的特征提取能力和轻量性,同时准确率有了明显的提升,模型也具备较好的平衡性和泛化能力,此外,实验还发现Com网络中的随机数的取值对模型的准确度都具有提高作用,但是可解释性不足。本文在数据处理提出去归一化的双线性插值法和进一步提取数据特征的Com网络,提高了10%以上的模型准确率,为提高光伏发电功率等级分类模型的准确率提供了新的方法和思路。

关键词: 光伏功率等级分类, 深度学习, 残差网络, Mobilenet, 轻量化, 平行网络

Abstract: To improve the accuracy of photovoltaic power generation level classification to meet industry requirements, this paper proposes a classification model based on Res-MobileCom parallel network. In data processing, denormalized linear interpolation is used to retain data features to the greatest extent. Then, by simplifying the structures of Resnet and Mobilenet, their outputs are jointly input into the combination network after parallel training to further extract data features, and finally the classification results are obtained. Experiments show that compared with common deep learning models, the model proposed in this paper retains the feature extraction capability and lightweight nature of Resnet and Mobilenet. At the same time, the accuracy has been significantly improved, and the model also has good balance performance and generalization ability. In addition, experiments also find that the values of random numbers in the combination network can improve the accuracy of the model, but it lacks Interpretability. This paper proposes the denormalized linear interpolation in data processing and the combination network for further extracting data features, which improves the accuracy of the model by over 10%. It provides new methods and ideas for improving the accuracy of the photovoltaic power generation level classification model.

Key words: photovoltaic power rating classification, deep learning, residual network, mobilenet, lightweight design, parallel network