综合智慧能源 ›› 2026, Vol. 48 ›› Issue (1): 78-84.doi: 10.3969/j.issn.2097-0706.2026.01.008

• 电力系统智能控制与数据分析 • 上一篇    下一篇

基于大数据技术的分布式发电电能质量分析

刘超然1(), 刘玲玲2(), 王凤3()   

  1. 1.广电计量检测集团股份有限公司,广州 510656
    2.国能宁夏鸳鸯湖第一发电有限公司,银川 751400
    3.昆明理工大学 管理与经济学院,昆明 650504
  • 收稿日期:2024-03-13 修回日期:2024-06-17 出版日期:2026-01-25
  • 作者简介:刘超然(1988),女,高级工程师,硕士,从事系统质量与可靠性、系统控制优化、智能化技术与应用等方面的研究, liuchr.buaa@163.com
    刘玲玲(1984),女,助理工程师,从事电力系统运营方面的研究,631017504@qq.com
    王凤(1989),女,讲师,博士,从事大数据挖掘、机器学习、复杂系统科学等方面的研究,wangfeng@kust.edu.cn
  • 基金资助:
    云南省基础研究计划青年基金项目(202201AU070127)

Power quality analysis of distributed generation based on big data technology

LIU Chaoran1(), LIU Lingling2(), WANG Feng3()   

  1. 1. GRG Metrology & Test Group Company Limited,Guangzhou 510656, China
    2. Guoneng Ningxia Yuanyanghu No.1 Power Generation Company Limited,Yinchuan 751400, China
    3. Faculty of Management and Economics,Kunming University of Science and Technology,Kunming 650504,China
  • Received:2024-03-13 Revised:2024-06-17 Published:2026-01-25
  • Supported by:
    Youth Foundation of Yunnan Fundamental Research Project(202201AU070127)

摘要:

在大数据技术和数字电网建设不断推进的背景下,电网智能化运行面临着困境和机遇。为充分利用电力系统运营积累的大量数据,提出了一种新的大数据分析挖掘策略。基于电力系统运行实测数据,通过建立大数据分析算法和可视化模型,从故障类型和时间尺度维度开展多维统计分析,以了解分布式发电电网运行状况和电能质量故障规律,并进一步探讨其故障机理。研究结果表明,所提出的大数据分析挖掘策略能充分利用电力系统实际运行数据,更直观地了解分析电网运行规律和电能质量故障规律,为分布式发电智能化运营和高质量供电提供了有力的技术支撑。

关键词: 分布式发电, 电能质量, 故障规律, 大数据分析, 可视化技术

Abstract:

In the context of the continuous advancement of big data technology and digital grid construction, the intelligent operation of the power grid faces both challenges and opportunities. To fully utilize the vast amount of data accumulated during power system operation, a new big data analysis and mining strategy was proposed in this study. Based on actual operational data from the power system, a big data analysis algorithm and visualization model were developed to conduct multidimensional statistical analysis from the perspectives of fault type and time scale, aiming to understand the operational status of distributed generation grids and the patterns of power quality faults, while further exploring their fault mechanisms. The research results showed that the proposed big data analysis and mining strategy effectively leveraged actual power system operational data, providing an intuitive understanding and analysis of power grid operational patterns and power quality fault characteristics, thereby offering strong technical support for the intelligent operation of distributed generation and high-quality power supply.

Key words: distributed generation, power quality, fault pattern, big data analysis, visualization technology

中图分类号: