综合智慧能源 ›› 2026, Vol. 48 ›› Issue (1): 85-97.doi: 10.3969/j.issn.2097-0706.2026.01.009

• 电力系统智能控制与数据分析 • 上一篇    

基于评价因子重构与DECN-BiGRU的海岛微电网负荷预测

梁富光(), 马忠强()   

  1. 国网福建省电力有限公司 宁德供电公司,福建 宁德 352101
  • 收稿日期:2025-04-16 修回日期:2025-09-30 出版日期:2026-01-25
  • 作者简介:梁富光(1968),男,高级工程师,从事电力安全生产、基建、运检和经营管理方面的工作, lfg1_1968@126.com
    马忠强(1974),男,高级工程师,从事电网运维检修和规划建设方面的工作,mzq_1974@163.com
  • 基金资助:
    国家电网公司科技项目(52139023000D)

Load prediction for island microgrids based on evaluation factor reconstruction and DECN-BiGRU

LIANG Fuguang(), MA Zhongqiang()   

  1. State Grid Fujian Electric Power Compang Limited,Ningde Power Supply Company,Ningde 352101,China
  • Received:2025-04-16 Revised:2025-09-30 Published:2026-01-25
  • Supported by:
    National Grid Company Science and Technology Projects(52139023000D)

摘要:

针对海岛微电网负荷的强非线性、非平稳性及多源耦合特性,提出一种基于评价因子重构的鲁棒经验模态分解(REMD)结合细节增强卷积网络(DECN)与双向门控循环单元(BiGRU)的负荷预测方法。通过REMD与评价因子重构,实现多尺度特征解耦;构建DECN-BiGRU混合架构,融合局部差异与全局依赖特征;引入多任务学习优化分量耦合关系。试验表明,模型较传统方法的平均绝对百分比误差降低 68.78%,较深度学习模型的平均绝对误差降低 68.97%,验证了多模态特征融合与双向建模的有效性。研究结果为海岛微电网的电力调度与储能配置提供了参考。

关键词: 海岛微电网, 负荷预测, 鲁棒经验模态分解, 细节增强卷积网络, 双向门控循环单元, 评价因子重构, 多任务学习, 储能

Abstract:

Aiming at the strong nonlinearity, non-stationarity, and multi-source coupling characteristics of island microgrid loads, a load prediction method was proposed, integrating robust empirical mode decomposition (REMD) based on evaluation factor reconstruction with detail-enhanced convolutional network (DECN) and bidirectional gated recurrent unit (BiGRU). Multi-scale feature decoupling was achieved through REMD and evaluation factor reconstruction. A DECN-BiGRU hybrid architecture was constructed to fuse local differences and global dependency features, and multi-task learning was introduced to optimize the coupling relationships among components. Experiments showed that the model reduced the mean absolute percentage error by 68.78% compared with traditional methods and reduced the mean absolute error by 68.97% compared with deep learning models, thereby verifying the effectiveness of multi-modal feature fusion and bidirectional modeling. The research findings provide reference for power scheduling and energy storage configuration in island microgrids.

Key words: island microgrid, load prediction, robust empirical mode decomposition, detail-enhanced convolutional network, bidirectional gated recurrent unit, evaluation factor reconstruction, multi-task learning, energy storage

中图分类号: