[1] |
International Energy Agency. World energy outlook 2023[R]. Paris: International Energy Agency, 2023.
|
[2] |
ZHANG J L, WEI H S. A review on configuration optimization of hybrid energy system based on renewable energy[J]. Frontiers in Energy Research, 2022, 10: 977925.
|
[3] |
ZHANG C, XIE Y L, ZHANG H X, et al. Optimal design and performance assessment for a solar powered electricity, heating and hydrogen integrated energy system[J]. Energy, 2023, 262: 125453.
|
[4] |
WANG H, JI X, XU L, et al. Analysis on overall energy efficiency and flexibility of thermal integrated energy system[J]. Thermal Science, 2023, 27(2A): 975-981.
|
[5] |
XU Y R, SONG Y, DENG Y J, et al. Low‑carbon economic dispatch of integrated energy system considering the uncertainty of energy efficiency[J]. Energy Reports, 2023, 9: 1003-1010.
|
[6] |
WANG W, YUAN B Q, SUN Q, et al. Application of energy storage in integrated energy systems: A solution to fluctuation and uncertainty of renewable energy[J]. Journal of Energy Storage, 2022, 52: 104812.
|
[7] |
KIM J K, PARK H, KIM S J, et al. Optimization models for the cost‑effective design and operation of renewable‑ integrated energy systems[J]. Renewable and Sustainable Energy Reviews, 2023, 183: 113429.
|
[8] |
LIU W X, HUANG Y C, LI Z Z, et al. Optimal allocation for coupling device in an integrated energy system considering complex uncertainties of demand response[J]. Energy, 2020, 198: 117279.
|
[9] |
GAO S, SONG T E, LIU S, et al. Joint optimization of planning and operation in multi‑region integrated energy systems considering flexible demand response[J]. IEEE Access, 2021, 9: 75840-75863.
|
[10] |
葛磊蛟, 于惟坤, 朱若源, 等. 考虑改进阶梯式碳交易机制与需求响应的综合能源系统优化调度[J]. 综合智慧能源, 2023, 45(7):97-106.
doi: 10.3969/j.issn.2097-0706.2023.07.011
|
|
GE Leijiao, YU Weikun, ZHU Ruoyuan, et al. Integrated energy system optimization scheduling considering improved stepped carbon trading mechanism and demand responses[J]. Integrated Intelligent Energy, 2023, 45(7): 97-106.
doi: 10.3969/j.issn.2097-0706.2023.07.011
|
[11] |
江亿. 光储直柔: 助力实现零碳电力的新型建筑配电系统[J]. 暖通空调, 2021, 51(10): 1-12.
|
|
JIANG Yi.PSDF(photovoltaic, storage, DC, flexible): A new type of building power distribution system for zero carbon power system[J]. Heating Ventilating & Air Conditioning, 2021, 51(10): 1-12.
|
[12] |
CAI S H, GOU Z H. Defining the energy role of buildings as flexumers: A review of definitions, technologies and applications[J]. Energy and Buildings, 2024, 303: 113821.
|
[13] |
杨龙杰, 李华强, 余雪莹, 等. 计及灵活性的孤岛型微电网多目标日前优化调度方法[J]. 电网技术, 2018, 42(5): 1432-1440.
|
|
YANG Longjie, LI Huaqiang, YU Xueying, et al. Multi‑objective day‑ahead optimal scheduling of isolated microgrid considering flexibility[J]. Power System Technology, 2018, 42(5): 1432-1440.
|
[14] |
刘蓉晖, 李子林, 杨秀, 等. 考虑用户侧柔性负荷的社区综合能源系统日前优化调度[J]. 太阳能学报, 2019, 40(10): 2842-2850.
|
|
LIU Ronghui, LI Zilin, YANG Xiu, et al. Optimal dispatch of community integrated energy system considering user‑side flexible load[J]. Acta Energiae Solaris Sinica, 2019, 40(10): 2842-2850.
|
[15] |
朱霄珣, 刘占田, 薛劲飞, 等. 计及柔性负荷参与的综合能源系统优化调度[J]. 太阳能学报, 2023, 44(9):29-38.
doi: 10.19912/j.0254-0096.tynxb.2022-0725
|
|
ZHU Xiaoxun, LIU Zhantian, XUE Jinfei, et al. Optimal scheduling of integrated energy system with flexible load participation[J]. Acta Energiae Solaris Sinica, 2023, 44(9): 29-38.
doi: 10.19912/j.0254-0096.tynxb.2022-0725
|
[16] |
鲍海波, 梁浚杰, 李想. 园区供电系统广义负荷需求响应建模与分析[J]. 综合智慧能源, 2024, 46(1): 11-17.
doi: 10.3969/j.issn.2097-0706.2024.01.002
|
|
BAO Haibo, LIANG Junjie, LI Xiang. Modeling and analysis on demand response for generalized load of power supply systems in industrial parks[J]. Integrated Intelligent Energy, 2024, 46(1): 11-17.
doi: 10.3969/j.issn.2097-0706.2024.01.002
|
[17] |
任洪波, 王楠, 吴琼, 等. 考虑阶梯型碳交易的多负荷聚合商协同优化调度与成本分配[J]. 电力建设, 2024, 45(2): 171-182.
doi: 10.12204/j.issn.1000-7229.2024.02.015
|
|
REN Hongbo, WANG Nan, WU Qiong, et al. Collaborative optimal scheduling and cost allocation of multiload aggregator considering ladder‑type carbon trading[J]. Electric Power Construction, 2024, 45(2):171-182.
doi: 10.12204/j.issn.1000-7229.2024.02.015
|
[18] |
崔杨, 闫石, 王铮, 等. 多主体利益制衡的综合能源系统日前-实时出清方法[J]. 电力系统自动化, 2020, 44(24):68-76.
|
|
CUI Yang, YAN Shi, WANG Zheng, et al. Day‑ahead and real‑time clearing method of integrated energy system considering interest balance between multiple entities[J]. Automation of Electric Power Systems, 2020, 44(24): 68-76.
|
[19] |
李明扬, 董哲. 含分布式新能源和需求响应负荷的虚拟电厂定价机制及优化调度[J]. 综合智慧能源, 2024, 46(10): 12-17.
doi: 10.3969/j.issn.2097-0706.2024.10.002
|
|
LI Mingyang, DONG Zhe. Pricing mechanism and optimal scheduling of virtual power plants containing distributed renewable energy and demand response loads[J]. Integrated Intelligent Energy, 2024, 46(10): 12-17.
doi: 10.3969/j.issn.2097-0706.2024.10.002
|
[20] |
刘俊峰, 罗燕, 侯媛媛, 等. 考虑广义储能的微电网主动能量管理优化算法研究[J]. 电网技术, 2023, 47(1):245-255.
|
|
LIU Junfeng, LUO Yan, HOU Yuanyuan, et al. Research on optimization algorithm of active microgrid energy management considering generalized energy storage[J]. Power System Technology, 2023, 47(1):245-255.
|
[21] |
李铂航, 李宏仲, 张民元. 计及负荷特性的综合能源系统低碳经济调度[J]. 综合智慧能源, 2023, 45(8):72-79.
doi: 10.3969/j.issn.2097-0706.2023.08.009
|
|
LI Bohang, LI Hongzhong, ZHANG Minyuan. Low‑carbon economic dispatch of integrated energy systems considering load characteristics[J]. Integrated Intelligent Energy, 2023, 45(8): 72-79.
doi: 10.3969/j.issn.2097-0706.2023.08.009
|
[22] |
席昌远, 吴迪, 李桂强, 等. 计及需求侧柔性负荷调控的综合能源系统优化运行方法研究[J]. 暖通空调, 2024, 54(8): 81-89.
|
|
XI Changyuan, WU Di, LI Guiqiang, et al. Optimal operation method of integrated energy systems considering flexible load regulation of demand side[J]. Heating Ventilating & Air Conditioning, 2024, 54(8):81-89.
|
[23] |
中国能源网. 柔性调控,美的楼宇科技成功助力浙江省电网削峰填谷[EB/OL].(2023-11-21)[2024-11-12]. https://www.cnenergynews.cn/huanbao/2023/11/21/detail_20231121139509.htm.
|
[24] |
沈运帷, 徐凯, 林顺富, 等. 考虑广义储能参与的多园区综合能源系统低碳优化运行策略[J]. 电力自动化设备, 2024, 44(11): 41-51.
|
|
SHEN Yunwei, XU Kai, LIN Shunfu, et al. Low‑carbon optimal operation strategy of multi‑park integrated energy system considering generalized energy storage participation[J]. Electric Power Automation Equipment, 2024, 44(11): 41-51.
|
[25] |
李成宸. 计及广义储能的综合能源系统低碳经济调度研究[D]. 北京: 华北电力大学, 2024.
|
|
LI Chengchen. Study on low‑carbon economic dispatching of integrated energy system considering generalized energy storage[D]. Beijing: North China Electric Power University, 2024.
|
[26] |
WANG J J, DENG H D, QI X L. Cost‑based site and capacity optimization of multi‑energy storage system in the regional integrated energy networks[J]. Energy, 2022, 261: 125240.
|
[27] |
LIU Z J, FAN G Y, SUN D K, et al. A novel distributed energy system combining hybrid energy storage and a multi‑objective optimization method for nearly zero‑energy communities and buildings[J]. Energy, 2022, 239: 122577.
|
[28] |
梅府贤, 李昀熠, 万灿, 等. 计及交互功率不确定性和柔性负荷的输配协同优化调度[J]. 高电压技术, 2024, 50(8): 3521-3535.
|
|
MEI Fuxian, LI Yunyi, WAN Can, et al. Coordinated optimal dispatch for transmission and distribution networks considering interactive power uncertainty and flexible load[J]. High Voltage Engineering, 2024, 50(8):3521-3535.
|
[29] |
汪卫华, 张慧敏, 陈方. 用削峰填谷方法提高供电企业效益的分析[J]. 电网技术, 2004, 28(18): 79-81.
|
|
WANG Weihua, ZHANG Huimin, CHEN Fang. Analysis of improving profit of power supply enterprises by peak load shifting[J]. Power System Technology, 2004, 28(18): 79-81.
|
[30] |
刘钊, 郭子豪, 申安, 等. 考虑冷热电灵活性负荷需求响应的区域综合能源系统运行优化[J]. 南方能源建设, 2024, 11(6):153-163.
|
|
LIU Zhao, GUO Zihao, SHEN An, et al. Optimization of regional integrated energy system operation considering flexible load demand response for cooling,heating and power[J]. Southern Energy Construction, 2024, 11(6): 153-163.
|
[31] |
王瑜, 王浩. 电池储能削峰填谷选址定容方法研究[J]. 电气应用, 2024, 43(7): 99-106.
|
|
WANG Yu, WANG Hao. Research on battery energy storage peak‑shaving and valley‑filling siting and capacity setting methods[J]. Electrotechnical Application, 2024, 43(7): 99-106.
|
[32] |
高冰, 李国翊, 梅晓辉, 等. 含分层储能的冷热电联供系统运行优化[J]. 化学工程, 2024, 2(1): 88-94.
|
|
GAO Bing, LI Guoyi, MEI Xiaohui, et al. Operation optimization of combined cooling heating and power microgrid with hierarchical energy storage[J]. Chemical Engineering (China), 2024, 52(1): 88-94.
|
[33] |
张林茹, 吕丽霞, 刘长良, 等. 基于车网互动的区域电网优化调度研究[J]. 华北电力大学学报(自然科学版), 2024, 51(1): 65-73.
|
|
ZHANG Linru, LYU Lixia, LIU Changliang, et al. Research on optimal dispatching of regional power grid based on vehicle network interaction[J]. Journal of North China Electric Power University(Natural Science Edition), 2024, 51(1): 65-73.
|
[34] |
YANG Y B, LI R L, HUANG T. Smart meter data analysis of a building cluster for heating load profile quantification and peak load shifting[J]. Energies, 2020, 13(17): 4343.
|
[35] |
LUO Z Y, YANG S, XIE N, et al. Multi‑objective capacity optimization of a distributed energy system considering economy, environment and energy[J]. Energy Conversion and Management, 2019, 200: 112081.
|
[36] |
ZHAO X Q, YANG Y B, XU Q S. Day‑ahead robust optimal dispatch of integrated energy station considering battery exchange service[J]. Journal of Energy Storage, 2022, 50: 104228.
|