综合智慧能源 ›› 2025, Vol. 47 ›› Issue (7): 32-43.doi: 10.3969/j.issn.2097-0706.2025.07.004

• 博弈论与电力市场决策 • 上一篇    下一篇

考虑不确定性的综合能源系统建模及优化研究进展

宋坤(), 顾文波*()   

  1. 新疆大学 电气工程学院,乌鲁木齐 830017
  • 收稿日期:2025-02-27 修回日期:2025-03-26 出版日期:2025-07-25
  • 通讯作者: *顾文波(1992),男,副教授,博士,从事可再生能源、煤炭智能灵活发电、综合能源系统优化等方面的研究,bobo1314@sjtu.edu.cn
  • 作者简介:宋坤(1998),男,硕士生,从事综合能源系统建模等方面的研究,kun_song@stu.xju.edu.cn
  • 基金资助:
    新疆维吾尔自治区重大科技项目(2023A01005-2)

Research progress on modeling and optimization of integrated energy systems considering uncertainty

SONG Kun(), GU Wenbo*()   

  1. School of Electrical Engineering, Xinjiang University, Urumqi 830017, China
  • Received:2025-02-27 Revised:2025-03-26 Published:2025-07-25
  • Supported by:
    Major Science and Technology Project of Xinjiang Uygur Autonomous Region(2023A01005-2)

摘要:

综合能源系统(IES)优化调度受可再生能源、负荷等不确定因素波动的影响。无法准确描述和处理这些不确定参数将导致系统可靠性受限,缺乏细化的建模和优化方法使不确定因素分析变得更加复杂。为完整、系统性地分析不确定性建模和优化方法,梳理了IES的结构、不确定性来源和建模方式,归纳总结了蒙特卡罗模拟、信息差距决策理论、区间法、鲁棒优化和数据驱动法及其在不确定性优化中的应用和研究。研究发现,不存在单一最佳的优化方法,多种方法的优势互补可实现IES经济效益和环境效益的最大化。根据当前研究的难点与热点,对未来不确定性优化方向进行了展望。

关键词: 综合能源系统, 系统结构, 数学建模, 不确定性优化, 蒙特卡罗模拟, 信息差距决策理论, 鲁棒优化, 能源枢纽

Abstract:

The optimal scheduling of integrated energy systems (IES) is affected by fluctuations in uncertain factors such as renewable energy and load. Failure to accurately describe and process these uncertain parameters will constrain system reliability, and the lack of refined modeling and optimization methods makes uncertainty analysis more complex. To comprehensively and systematically analyze uncertainty modeling and optimization methods, the structure of IES, sources of uncertainty, and modeling approaches are reviewed. Monte Carlo simulation, information gap decision theory, interval methods, robust optimization, and data-driven methods are summarized, along with their applications and studies in uncertainty optimization. Research findings indicate that there is no single best optimization method. The complementarity of multiple methods can maximize the economic and environmental benefits of IES. Based on current research challenges and hotspots, future directions for uncertainty optimization are outlined.

Key words: integrated energy system, system structure, mathematical modeling, uncertainty optimization, Monte Carlo simulation, info-gap decision theory, robust optimization, energy hub

中图分类号: