综合智慧能源 ›› 2025, Vol. 47 ›› Issue (7): 32-43.doi: 10.3969/j.issn.2097-0706.2025.07.004
收稿日期:
2025-02-27
修回日期:
2025-03-26
出版日期:
2025-07-25
通讯作者:
*顾文波(1992),男,副教授,博士,从事可再生能源、煤炭智能灵活发电、综合能源系统优化等方面的研究,bobo1314@sjtu.edu.cn。作者简介:
宋坤(1998),男,硕士生,从事综合能源系统建模等方面的研究,kun_song@stu.xju.edu.cn。
基金资助:
Received:
2025-02-27
Revised:
2025-03-26
Published:
2025-07-25
Supported by:
摘要:
综合能源系统(IES)优化调度受可再生能源、负荷等不确定因素波动的影响。无法准确描述和处理这些不确定参数将导致系统可靠性受限,缺乏细化的建模和优化方法使不确定因素分析变得更加复杂。为完整、系统性地分析不确定性建模和优化方法,梳理了IES的结构、不确定性来源和建模方式,归纳总结了蒙特卡罗模拟、信息差距决策理论、区间法、鲁棒优化和数据驱动法及其在不确定性优化中的应用和研究。研究发现,不存在单一最佳的优化方法,多种方法的优势互补可实现IES经济效益和环境效益的最大化。根据当前研究的难点与热点,对未来不确定性优化方向进行了展望。
中图分类号:
宋坤, 顾文波. 考虑不确定性的综合能源系统建模及优化研究进展[J]. 综合智慧能源, 2025, 47(7): 32-43.
SONG Kun, GU Wenbo. Research progress on modeling and optimization of integrated energy systems considering uncertainty[J]. Integrated Intelligent Energy, 2025, 47(7): 32-43.
表1
不确定性来源及其表征方法
组件 | 参数 | 描述 | 不确定性原因 | 主要表征方法 | 参考文献 |
---|---|---|---|---|---|
系统 输入 | 风速 | 计算风机发电量所需的风速数据 | 风能的间歇性、测量不准确、测量基点变化 | 信息差距决策论、数据驱动 | [ |
辐照度 | 计算光伏发电量所需的太阳辐射数据 | 光伏的间歇性、测量不准确、测量基点变化 | 蒙特卡罗、数据驱动 | [ | |
能源价格 | 单位能源的成本支出 | 政策变化和全球能源市场的驱动 | 鲁棒优化 | [ | |
能源 枢纽 | 技术参数 | 能源转换和存储设备的技术参数(例如转换效率) | 由于磨损、老化等因素,能源系统组件的技术性能可能会偏离出厂设置 | 鲁棒优化、蒙特卡罗 | [ |
投资成本 | 设备安装、投资支出 | 规划阶段和实施阶段的市场成本波动 | 鲁棒优化 | [ | |
系统 输出 | 排放因子 | 单位能量排放的污染物量 | 随市场条件和环境目标变化 | 蒙特卡罗、鲁棒优化 | [ |
能源需求 | 输出到用户端的能源需求数据 | 气候变化和用户端行为模式转变 | 蒙特卡罗、区间法 | [ |
表3
不确定性优化方法总结
不确定性优化方法 | 特性 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
蒙特卡罗模拟 | 基于仿真模拟的方法 | 考虑到大多数不确定性场景,通过模拟真实状态实现高精度 | 需要处理大量数据,计算难以处理 | [ |
IGDT | 利用预测值表示不确定性 | 最大限度提高目标实现可能性,不需要不确定性的概率密度函数 | 难以同时模拟多个不确定性 | [ |
区间法 | 利用区间边界的不确定性表示 | 当仅存在不确定性区间时非常有用,所需数据较少 | 不能考虑随机变量之间的相关性,难以用于求解非线性问题 | [ |
RO | 利用不确定性集来表示 | 当不确定变量概率密度函数不可用时,仅需定义合理的不确定性集 | 考虑最坏情况,有时较为保守 | [ |
数据驱动方法 | 摒弃内部机理严格分析,根据大量历史数据进行相关性分析 | 与特定的概率分布相比,不确定性参数的历史数据更容易获得 | 存在大量数据,增加算法的复杂度,方法效率依赖训练过程的质量和数据的量级 | [ |
[1] |
王京龙, 王晖, 杨野, 等. 考虑多重不确定性的电-热-气综合能源系统协同优化方法[J]. 综合智慧能源, 2024, 46(4): 42-51.
doi: 10.3969/j.issn.2097-0706.2024.04.006 |
WANG Jinglong, WANG Hui, YANG Ye, et al. Collaborative optimization method for power-heat-gas integrated energy systems considering multiple uncertainties[J]. Integrated Intelligent Energy, 2024, 46(4): 42-51.
doi: 10.3969/j.issn.2097-0706.2024.04.006 |
|
[2] |
李宜哲, 王丹, 贾宏杰, 等. 综合能源系统能量枢纽多样性建模和典型适用性研究[J]. 综合智慧能源, 2023, 45(7):22-29.
doi: 10.3969/j.issn.2097-0706.2023.07.003 |
LI Yizhe, WANG Dan, JIA Hongjie, et al. Diverse modeling methods for energy hubs in integrated energy systems and their typical applications[J]. Integrated Intelligent Energy, 2023, 45(7): 22-29.
doi: 10.3969/j.issn.2097-0706.2023.07.003 |
|
[3] | LI S X, LI Z Y. Coordinating and valuing the flexibility resources in a rural integrated energy system by considering correlated source-load uncertainty[J]. Renewable Energy, 2024, 237: 121576377. |
[4] | YANG M, LIU Y S. A two-stage robust configuration optimization framework for integrated energy system considering multiple uncertainties[J]. Sustainable Cities and Society, 2024, 101: 105120 |
[5] | LIU T H, TIAN J, ZHU H Y, et al. Key technologies and developments of multi-energy system: Three-layer framework, modelling and optimisation[J]. Energy, 2023, 277: 127697. |
[6] | GAO Y, AI Q, HE X, et al. Coordination for regional integrated energy system through target cascade optimization[J]. Energy, 2023, 276: 127606. |
[7] | ALABI T M, AGHIMIEN E I, AGBAJOR F D, et al. A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems[J]. Renewable Energy, 2022, 194: 822-849. |
[8] | YADAV V, SINGH B, VERMA A. Self-reliant solar PV based microgrid with seamless transition capabilities at weak grid conditions[J]. Electric Power Systems Research, 2023, 214: 108825. |
[9] | RAYASH AABU, DINCER I. Development and assessment of an integrated wind-solar based energy system for sustainable communities[J]. Energy Conversion and Management, 2023, 277: 116680. |
[10] | KAPIL A, BULATOV I, SMITH R, et al. Process integration of low grade heat in process industry with district heating networks[J]. Energy, 2012, 44(1): 11-19. |
[11] | GAO Y, AI Q. Novel optimal dispatch method for multiple energy sources in regional integrated energy systems considering wind curtailment[J]. CSEE Journal of Power and Energy Systems, 2024, 10(5): 2166-2173. |
[12] | KHANI H, FARAG H E Z. Optimal Day-ahead scheduling of power-to-gas energy storage and gas load management in wholesale electricity and gas markets[J]. IEEE Transactions on Sustainable Energy, 2018, 9(2): 940-951. |
[13] | MOHAMMADI M, NOOROLLAHI Y, MOHAMMADI-IVATLOO B, et al. Energy hub:From a model to a concept—A review[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 1512-1527. |
[14] | HAGHRAH A, NAZARI-HERIS M, MOHAMMADI-IVATLOO B. Solving combined heat and power economic dispatch problem using real coded genetic algorithm with improved Mühlenbein mutation[J]. Applied Thermal Engineering, 2016, 99: 465-475. |
[15] | GUO L, LIU W J, CAI J J, et al. A two-stage optimal planning and design method for combined cooling, heat and power microgrid system[J]. Energy Conversion and Management, 2013, 74: 433-445. |
[16] | SHEIKHI A, RANJBAR A M, ORAEE H. Financial analysis and optimal size and operation for a multicarrier energy system[J]. Energy and Buildings, 2012, 48: 71-78. |
[17] | WANG J J, ZHANG C F, JING Y Y. Multi-criteria analysis of combined cooling, heating and power systems in different climate zones in China[J]. Applied Energy, 2010, 87(4): 1247-1259. |
[18] | LI M, MU H L, LI N, et al. Optimal design and operation strategy for integrated evaluation of CCHP (combined cooling heating and power) system[J]. Energy, 2016, 99: 202-220. |
[19] | ZHU Y, WU S Q, LI J Y, et al. Towards a carbon-neutral community:Integrated renewable energy systems(IRES)—Sources,storage,optimization,challenges,strategies and opportunities[J]. Journal of Energy Storage, 2024, 83: 110663. |
[20] | BOßMANN T, ESER E J. Model-based assessment of demand-response measures: A comprehensive literature review[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1637-1656. |
[21] | GAO Y, AI Q. Demand-side response strategy of multi-microgrids based on an improved co-evolution algorithm[J]. CSEE Journal of Power and Energy Systems, 2021, 7(5): 903-910. |
[22] | FODSTAD M, CRESPO DEL GRANADO P, HELLEMO L, et al. Next frontiers in energy system modelling: A review on challenges and the state of the art[J]. Renewable and Sustainable Energy Reviews, 2022, 160: 112246. |
[23] | WANG J X, ZHONG H W, MA Z M, et al. Review and prospect of integrated demand response in the multi-energy system[J]. Applied Energy, 2017, 202: 772-782. |
[24] | BEHBOODI S, CHASSIN D P, CRAWFORD C, et al. Renewable resources portfolio optimization in the presence of demand response[J]. Applied Energy, 2016, 162: 139-148. |
[25] | MOJARADI Z, TAVAKKOLI-MOGHADDAM R, BOZORGI-AMIRI A, et al. A two-stage risk-based framework for dynamic configuration of a renewable-based distribution system considering demand response programs and hydrogen storage systems[J]. International Journal of Hydrogen Energy, 2024, 62: 256-271. |
[26] | WALKER W E, HARREMOëS P, ROTMANS J, et al. Defining uncertainty: A conceptual basis for uncertainty management in model-based decision support[J]. Integrated Assessment, 2003, 4(1): 5-17. |
[27] | MANCÒ G, TESIO U, GUELPA E, et al. A review on multi energy systems modelling and optimization[J]. Applied Thermal Engineering, 2024, 236: 121871. |
[28] | MAVROMATIDIS G, OREHOUNIG K, CARMELIET J. A review of uncertainty characterisation approaches for the optimal design of distributed energy systems[J]. Renewable and Sustainable Energy Reviews, 2018, 88: 258-277. |
[29] | BARADAR M, HESAMZADEH M R. A stochastic SOCP optimal power flow with wind power uncertainty[C]// Proceedings of the 2014 IEEE PES General Meeting, 2014. |
[30] | RABIEE A, SOROUDI A, KEANE A. Information gap decision theory based OPF with HVDC connected wind farms[J]. IEEE Transactions on Power Systems, 2015, 30(6): 3396-3406. |
[31] | LI Y B, SUN Y T, LIU J C, et al. A data driven robust optimization model for scheduling near-zero carbon emission power plant considering the wind power output uncertainties and electricity-carbon market[J]. Energy, 2023, 279: 128053. |
[32] | TINA G, GAGLIANO S, RAITI S. Hybrid solar/wind power system probabilistic modelling for long-term performance assessment[J]. Solar Energy, 2006, 80(5): 578-588. |
[33] | HUA L, XIA J J, XIANG G, et al. Scenario-based stochastic optimization on the variability of solar and wind for component sizing of integrated energy systems[J]. Renewable Energy, 2024, 237: 121543. |
[34] | 郭方洪, 冯秀荣, 杨淏, 等. 基于数据模型双驱动的新能源微电网分布鲁棒优化调度[J]. 电力系统自动化, 2024, 48(20): 36-47. |
GUO Fanghong, FENG Xiurong, YANG Hao, et al. Dual-data-model-driven distributionally robust optimal scheduling of renewable energy microgrid[J]. Automation of Electric Power Systems, 2024, 48(20): 36-47. | |
[35] | SOROUDI A. Robust optimization based self scheduling of hydro-thermal Genco in smart grids[J]. Energy, 2013, 61: 262-271. |
[36] | HAN X J, WANG Z R, LI H Y, et al. Cooperative game robust optimization control for wind-solar-shared energy storage integrated system based on dual-settlement mode and multiple uncertainties[J]. Applied Energy, 2025, 378: 124799. |
[37] | JI L, NIU D X, HUANG G H. An inexact two-stage stochastic robust programming for residential micro-grid management-based on random demand[J]. Energy, 2014, 67: 186-199. |
[38] | XU D H, QU M, HANG Y, et al. Multi-objective optimal design of a solar absorption cooling and heating system under life-cycle uncertainties[J]. Sustainable Energy Technologies and Assessments, 2015, 11: 92-105. |
[39] | SARKER M R, PANDŽIĆ H, ORTEGA-VAZQUEZ M A. Optimal operation and services scheduling for an electric vehicle battery swapping station[J]. IEEE Transactions on Power Systems, 2015, 30(2): 901-910. |
[40] | CHAUDHRY A M, GHORBANIASL G, HACHEZ J, et al. Improving the potential of fifth-generation district heating and cooling networks through robust design and operational optimization under future energy market and demand uncertainties[J]. Energy and Buildings, 2024, 325: 114998. |
[41] | VALLEE F, VERSELE C, LOBRY J, et al. Non-sequential Monte Carlo simulation tool in order to minimize gaseous pollutants emissions in presence of fluctuating wind power[J]. Renewable Energy, 2013, 50: 317-324. |
[42] | ZHAO N X, GU W B. Low-carbon planning and optimization of the integrated energy system considering lifetime carbon emissions[J]. Journal of Building Engineering, 2024, 82: 108178. |
[43] | 李东东, 王啸林, 沈运帷, 等. 考虑多重不确定性的含需求响应及电碳交易的虚拟电厂优化调度策略[J]. 电力自动化设备, 2023, 43(5): 210-217, 251. |
LI Dongdong, WANG Xiaolin, SHEN Yunwei, et al. Optimal scheduling strategy of virtual power plant with demand response and electricity-carbon trading considering multiple uncertainties[J]. Electric Power Automation Equipment, 2023, 43(5): 210-217, 251. | |
[44] | XUE K, WANG J S, ZHANG S, et al. Design optimization of community energy systems based on dual uncertainties of meteorology and load for robustness improvement[J]. Renewable Energy, 2024, 232: 120956. |
[45] | ZIO E, DELFANTI M, GIORGI L, et al. Monte Carlo simulation-based probabilistic assessment of DG penetration in medium voltage distribution networks[J]. International Journal of Electrical Power & Energy Systems, 2015, 64: 852-860. |
[46] | MORADI-DALVAND M, MOHAMMADI-IVATLOO B, AMJADY N, et al. Self-scheduling of a wind producer based on information gap decision theory[J]. Energy, 2015, 81:588-600. |
[47] | CHATURVEDI A, PRASAD K, RANJAN R. Use of interval arithmetic to incorporate the uncertainty of load demand for radial distribution system analysis[J]. IEEE transactions on power delivery, 2006, 21(2): 1019-1021. |
[48] | PENG C, XIE P, PAN L, et al. Flexible robust optimization dispatch for hybrid wind/photovoltaic/hydro/thermal power system[J]. IEEE Transactions on Smart Grid, 2016, 7(2): 751-762. |
[49] | AIEN M, HAJEBRAHIMI A, FOTUHI-FIRUZABAD M. A comprehensive review on uncertainty modeling techniques in power system studies[J]. Renewable and Sustainable Energy Reviews, 2016, 57: 1077-1089. |
[50] | 李峰, 王琦, 胡健雄, 等. 数据与知识联合驱动方法研究进展及其在电力系统中应用展望[J]. 中国电机工程学报, 2021, 41(13): 4377-4390. |
LI Feng, WANG Qi, HU Jianxiong, et al. Combined data-driven and knowledge-driven methodology research advances and its applied prospect in power systems[J]. Proceedings of the CSEE, 2021, 41(13): 4377-4390. | |
[51] | RAYCHAUDHURI S. Introduction to Monte Carlo simulation[C]// Proceedings of the 2008 Winter Simulation Conference, 2008. |
[52] | GU Y X, ZHANG X X, MYHREN J A, et al. Techno-economic analysis of a solar photovoltaic/thermal (PV/T) concentrator for building application in Sweden using Monte Carlo method[J]. Energy Conversion and Management, 2018, 165: 8-24. |
[53] | URBANUCCI L, TESTI D. Optimal integrated sizing and operation of a CHP system with Monte Carlo risk analysis for long-term uncertainty in energy demands[J]. Energy Conversion and Management, 2018, 157: 307-316. |
[54] | CAI P C, MI Y, XING H J, et al. Hierarchical coordinated energy management strategy for electricity-hydrogen integrated charging stations based on IGDT and hybrid game[J]. Electric Power Systems Research, 2023, 223: 109527. |
[55] | MAJIDI M, MOHAMMADI-IVATLOO B, SOROUDI A. Application of information gap decision theory in practical energy problems: A comprehensive review[J]. Applied Energy, 2019, 249: 157-165. |
[56] | SUN Q, FU Y, LIN H Y, et al. A novel integrated stochastic programming-information gap decision theory (IGDT) approach for optimization of integrated energy systems (IESs) with multiple uncertainties[J]. Applied Energy, 2019, 249: 157-165. |
[57] | BAI L Q, LI F X, CUI H T, et al. Interval optimization based operating strategy for gas-electricity integrated energy systems considering demand response and wind uncertainty[J]. Applied Energy, 2016, 167: 270-279. |
[58] | NOJAVAN S, ZARE K. Optimal energy pricing for consumers by electricity retailer[J]. International Journal of Electrical Power & Energy Systems, 2018, 102: 401-412. |
[59] | WANG M Y, WANG M, WANG R Q, et al. Optimization scheduling for low-carbon operation of building integrated energy systems considering source-load uncertainty and user comfort[J]. Energy and Buildings, 2024, 318: 114423. |
[60] | 杜源, 薛屹洵, 常馨月, 等. 基于数据驱动自适应鲁棒优化的电-热耦合系统协同调度[J]. 电力需求侧管理, 2024, 26(5): 9-14. |
DU Yuan, XUE Yixun, CHANG Xinyue, et al. Coordinated dispatching of integrated electric and heat systems based on the data-driven adaptive robust optimization[J]. Power Demand Side Management, 2024, 26(5): 9-14. | |
[61] | 王渝红, 刘咏玥, 高仕林, 等. 数据驱动的新能源电力系统暂态电压稳定关键影响节点筛选方法[J/OL]. 高电压技术:1-17(2025-02-26)[2025-02-27].https://doi.org/10.13336/j.1003-6520.hve.20241383. |
WANG Yuhong, LIU Yongyue, GAO Shilin, et al. Data-driven approach for identifying key influencing nodes on transient voltage stability of power system with renewables[J/OL]. High Voltage Engineering:1-17(2025-02-26)[2025-02-27].https://doi.org/10.13336/j.1003-6520.hve.20241383. | |
[62] | ZHAO N X, GU W B, ZHENG Z P, et al. Multi-objective bi-level planning of the integrated energy system considering uncertain user loads and carbon emission during the equipment manufacturing process[J]. Renewable Energy, 2023, 216: 119070. |
[63] | XIONG J B, YE Y, WANG Q, et al. A comprehensive review on distributed energy cooperative control and optimization method for energy interconnection system[J]. Electric Power Systems Research, 2024, 237: 111007. |
[64] | MA T F, WU J Y, HAO L L, et al. The optimal structure planning and energy management strategies of smart multi energy systems[J]. Energy, 2018, 160: 122-141. |
[65] | MA T F, WU J Y, HAO L L. Energy flow modeling and optimal operation analysis of the micro energy grid based on energy hub[J]. Energy Conversion and Management, 2017, 133: 292-306. |
[66] | YAN R J, LU Z R, WANG J J, et al. Stochastic multi-scenario optimization for a hybrid combined cooling, heating and power system considering multi-criteria[J]. Energy Conversion and Management, 2021, 233: 113911. |
[67] | YAN R J, WANG J J, HUO S J, et al. Flexibility improvement and stochastic multi-scenario hybrid optimization for an integrated energy system with high-proportion renewable energy[J]. Energy, 2023, 263: 125779. |
[68] | 林锦弘, 奚圣羽, 李梦诗, 等. 园区综合能源系统多时间尺度优化[J]. 现代电子技术, 2023, 46(22): 137-143. |
LIN Jinhong, XI Shengyu, LI Mengshi, et al. Multi-timescales optimization of park-level integrated energy system[J]. Modern Electronics Technique, 2023, 46(22):137-143. | |
[69] | FARH H M H, AL-SHAMMA'A A A, ALAQL F, et al. Optimization and uncertainty analysis of hybrid energy systems using Monte Carlo simulation integrated with genetic algorithm[J]. Computers and Electrical Engineering, 2024, 120: 109833. |
[70] | ARNOLD U, YILDIZ Ö. Economic risk analysis of decentralized renewable energy infrastructures—A Monte Carlo simulation approach[J]. Renewable Energy, 2015, 77: 227-239. |
[71] | DONG X J, SHEN J N, MA Z F, et al. Stochastic optimization of integrated electric vehicle charging stations under photovoltaic uncertainty and battery power constraints[J]. Energy, 2025, 314: 134163. |
[72] | AIEN M, RASHIDINEJAD M, FOTUHI-FIRUZABAD M. On possibilistic and probabilistic uncertainty assessment of power flow problem: A review and a new approach[J]. Renewable and Sustainable Energy Reviews, 2014, 37: 883-895. |
[73] | MIRZAEI M A, SADEGHI-YAZDANKHAH A, MOHAMMADI-IVATLOO B, et al. Integration of emerging resources in IGDT-based robust scheduling of combined power and natural gas systems considering flexible ramping products[J]. Energy, 2019, 189:116195. |
[74] | NOJAVAN S, MAJIDI M, ZARE K. Performance improvement of a battery/PV/fuel cell/grid hybrid energy system considering load uncertainty modeling using IGDT[J]. Energy Conversion and Management, 2017, 147: 29-39. |
[75] | PENG B, KONG X S, TIAN C Y, et al. An IGDT-based a low-carbon dispatch strategy of urban integrated energy system considering intermittent features of renewable energy[J]. Energy Reports, 2023, 10: 4390-4401. |
[76] | NOJAVAN S, MAJIDI M, ZARE K. Risk-based optimal performance of a PV/fuel cell/battery/grid hybrid energy system using information gap decision theory in the presence of demand response program[J]. International Journal of Hydrogen Energy, 2017, 42(16):11857-11867. |
[77] | NAJAFI GHALELOU A, NOJAVAN S, ZARE K. Robust thermal and electrical management of smart home using information gap decision theory[J]. Applied Thermal Engineering, 2018, 132: 221-232. |
[78] | KARKHANEH J, ALLAHVIRDIZADEH Y, SHAYANFAR H, et al. Risk-constrained probabilistic optimal scheduling of FCPP-CHP based energy hub considering demand-side resources[J]. International Journal of Hydrogen Energy, 2020, 45(33):16751-16772. |
[79] | 苏永新, 聂伟棋, 谭貌. 考虑风电接入和气电转换的综合能源系统日前区间优化[J]. 电力系统自动化, 2019, 43(17): 63-71. |
SU Yongxin, NIE Weiqi, TAN Mao. Day-ahead interval optimization of integrated energy system considering wind power integration and gas-electricity transformation[J]. Automation of Electric Power Systems, 2019, 43(17): 63-71. | |
[80] | ZHANG X H, SON Y J, CHEONG T, et al. Affine-arithmetic-based microgrid interval optimization considering uncertainty and battery energy storage system degradation[J]. Energy, 2022, 242: 123015. |
[81] | DONG Y C, ZHANG H L, MA P, et al. A hybrid robust-interval optimization approach for integrated energy systems planning under uncertainties[J]. Energy, 2023, 274: 127267. |
[82] | SU Y X, ZHOU Y, TAN M. An interval optimization strategy of household multi-energy system considering tolerance degree and integrated demand response[J]. Applied Energy, 2020, 260: 114144. |
[83] | YANG D F, JIANG C, CAI G W, et al. Interval method based optimal planning of multi-energy microgrid with uncertain renewable generation and demand[J]. Applied Energy, 2020, 277: 115491. |
[84] | GABREL V, MURAT C, THIELE A. Recent advances in robust optimization: An overview[J]. European Journal of Operational Research, 2014, 235(3): 471-483. |
[85] | CONEJO A J, WU X. Robust optimization in power systems: A tutorial overview[J]. Optimization and Engineering, 2022, 23(4): 2051-2073. |
[86] | BERTSIMAS D, SIM M, ZHANG M L. Adaptive distributionally robust optimization[J]. Management Science, 2018, 65(2): 604-618. |
[87] | LASEMI M A, ARABKOOHSAR A, HAJIZADEH A, et al. A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors[J]. Renewable and Sustainable Energy Reviews, 2022, 160: 112320. |
[88] | NIKMEHR N. Distributed robust operational optimization of networked microgrids embedded interconnected energy hubs[J]. Energy, 2020, 199: 117440. |
[89] | GORISSEN B L, YANıKOĞLU İ, DEN HERTOG D. A practical guide to robust optimization[J]. Omega, 2015, 53: 124-137. |
[90] | ZHOU Y Z, GE J Y, LI X, et al. Bi-level distributionally robust optimization model for low-carbon planning of integrated electricity and heat systems[J]. Energy, 2024, 302: 131777. |
[91] | BERTSIMAS D, LITVINOV E, SUN X A, et al. Adaptive robust optimization for the security constrained unit commitment problem[J]. IEEE Transactions on Power Systems, 2012, 28(1): 52-63. |
[92] | SUN X M, HUI W C, DONG X L, et al. Evaluating the reliability of microgrids consisting of renewable energy sources using stochastic scheduling based on the data-driven uncertainty set[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108250. |
[93] | 范宏, 徐涛, 贾庆山. 数据-模型混合驱动的数据中心综合能源系统优化调度综述[J]. 南方电网技术, 2025, 19(3):174-187. |
FAN Hong, XU Tao, JIA Qingshan. Review of optimization scheduling for integrated energy systems with data centers based on hybrid data-model driven[J]. Southern Power System Technology, 2025, 19(3):174-187. | |
[94] | MA Y, LI Z, LIU R Y, et al. Data-driven interval robust optimization method of VPP bidding strategy in spot market under multiple uncertainties[J]. Applied Energy, 2025, 384: 125366. |
[95] | JAMATUTU S A, ABBASS K, GAWUSU S, et al. Quantifying future carbon emissions uncertainties under stochastic modeling and Monte Carlo simulation: Insights for environmental policy consideration for the Belt and Road Initiative region[J]. Journal of Environmental Management, 2024, 370: 122463. |
[1] | 陈亮, 刘桂英, 粟时平, 唐长久, 王辰浩, 郭思桐. 基于双层网络PER-MADDPG算法的综合能源系统协调优化调度[J]. 综合智慧能源, 2025, 47(7): 44-54. |
[2] | 邢作霞, 赵子逸, 孙浩, 张鹏飞, 付启桐. 基于电制氢多级利用的综合能源系统低碳经济运行优化研究[J]. 综合智慧能源, 2025, 47(7): 71-81. |
[3] | 张德斌, 林文野, 何梓轩, 岳心如, 宋文吉, 冯自平, FARID Mohammed Mehdi, USHAK DE GRAGEDA Svetlana Nikolaevna. 计及广义储能的建筑产消者社区综合能源系统日前调度优化[J]. 综合智慧能源, 2025, 47(7): 82-92. |
[4] | 陈浩, 马刚, 钱达, 马健, 彭乐瑶. 绿证-碳交易机制下考虑阶梯需求响应的区域综合能源系统优化调度[J]. 综合智慧能源, 2025, 47(5): 21-30. |
[5] | 张文博, 秦文萍, 刘佳昕, 陈玉梅, 刘博洋, 赵桉霆. 绿证-电-碳耦合市场下计及需求响应与租赁共享储能的VPP鲁棒优化调度策略[J]. 综合智慧能源, 2025, 47(5): 31-40. |
[6] | 季振亚, 郑帅帅, 许金星, 刘晓峰, 包宇庆. 计及碳-绿证联合交易的含需求响应的综合能源系统调度[J]. 综合智慧能源, 2025, 47(5): 41-50. |
[7] | 郝宁, 张天博, 蒋励. 考虑储能运营商的工业企业综合能源系统运行优化和利益分配研究[J]. 综合智慧能源, 2025, 47(4): 85-97. |
[8] | 张冬冬, 李芳凝, 刘天皓. 新型电力系统负荷预测关键技术及多元场景应用[J]. 综合智慧能源, 2025, 47(3): 47-61. |
[9] | 江美慧, 许镇江, 牛统科, 朱虹谕, 李想. 考虑综合需求响应的矿区综合能源系统日内多时间尺度滚动优化调度[J]. 综合智慧能源, 2025, 47(3): 73-83. |
[10] | 曲琪, 滕菲, 郭禹辛, 张琳雪. 考虑算力需求的港口综合能源系统分布式能源管理[J]. 综合智慧能源, 2025, 47(1): 42-50. |
[11] | 彭乐瑶, 马刚, 陈永华, 颜云松, 赖业宁, 李祝昆, 刘东洋, 唐靖. 考虑碳交易体系的微电网多阶段鲁棒优化运行[J]. 综合智慧能源, 2024, 46(9): 9-19. |
[12] | 邓振宇, 汪茹康, 徐钢, 云昆, 王颖. 综合能源系统中热电联产机组故障预警现状[J]. 综合智慧能源, 2024, 46(8): 67-76. |
[13] | 王俊, 田浩, 赵二岗, 舒展, 万子镜. 计及电动汽车共享储能特性的园区柔性资源低碳运行控制方法[J]. 综合智慧能源, 2024, 46(6): 16-26. |
[14] | 龚钢军, 王路遥, 常卓越, 柳旭, 邢汇笛. 基于能源枢纽的综合能源信息物理系统安全防护架构研究[J]. 综合智慧能源, 2024, 46(5): 65-72. |
[15] | 李云, 周世杰, 胡哲千, 梁均原, 肖雷鸣. 基于NSGA-Ⅱ-WPA的综合能源系统多目标优化调度[J]. 综合智慧能源, 2024, 46(4): 1-9. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||