综合智慧能源 ›› 2026, Vol. 48 ›› Issue (1): 59-66.doi: 10.3969/j.issn.2097-0706.2026.01.006

• 综合智慧能源系统优化与调度 • 上一篇    下一篇

基于双重特征处理的园区综合能源系统供热负荷预测研究

薛东(), 徐静静(), 江婷(), 王晓海(), 徐聪()   

  1. 中国华电科工集团有限公司,北京 100070
  • 收稿日期:2025-06-09 修回日期:2025-07-23 出版日期:2026-01-25
  • 作者简介:薛东(1998),男,硕士,从事综合能源系统负荷预测方面的研究,xd18832003035@163.com
    徐静静(1986),女,正高级工程师,硕士,从事综合能源系统集成、运行优化等方面的研究,xujj@chec.com.cn
    江婷(1991),女,高级工程师,硕士,从事综合能源系统集成、运行优化等方面的研究,jiangt@chec.com.cn
    王晓海(1995),男,工程师,硕士,从事综合能源系统集成、运行优化等方面的研究,wangxiaohai@chec.com.cn
    徐聪(1989),女,高级工程师,博士,从事综合能源系统集成、运行优化等方面的研究,xucong@chec.com.cn
  • 基金资助:
    新疆维吾尔自治区重大科技专项(2022A1001-3)

Research on heat load prediction of integrated energy systems in parks based on dual feature processing

XUE Dong(), XU Jingjing(), JIANG Ting(), WANG Xiaohai(), XU Cong()   

  1. China Huadian Engineering Company Limited,Beijing 100070,China
  • Received:2025-06-09 Revised:2025-07-23 Published:2026-01-25
  • Supported by:
    Major Science and Technology Projects of Xinjiang Uygur Autonomous Region(2022A1001-3)

摘要:

针对园区综合能源系统供热负荷受多能流影响以及现有预测模型特征提取能力不足的问题,提出一种基于集成改进型自适应白噪声完备集成经验模态分解(ICEEMDAN)与多变量相空间重构的双重特征处理热负荷预测模型。运用ICEEMDAN法对热负荷时间序列进行分解,计算各分量的样本熵值并进行重构,再结合气温等输入特征组成不同频率下的多变量时间序列数据集;利用关联积分法确定序列的最佳延迟时间和嵌入维数,以此获得各数据集的高维相空间;利用参数优化后的双向长短时记忆神经网络模型对热负荷分量进行预测,并将预测结果叠加后得到最终的热负荷预测值。案例结果表明,与其他模型对比,所提方法取得了良好的预测效果。

关键词: 模态分解, 多变量相空间重构, 热负荷预测, 双向长短时记忆神经网络, 园区综合能源系统

Abstract:

The heat load of integrated energy systems in parks is affected by multi-energy flows, and existing prediction models have insufficient feature extraction capabilities. To address this, a dual feature processing model for heat load prediction was proposed, integrating improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) and multivariate phase space reconstruction. The heat load time series was decomposed using the ICEEMDAN method, and the components were reconstructed by calculating their sample entropy. These were then combined with input features such as air temperature to form multivariate time series datasets at different frequencies. The optimal delay time and embedding dimension of the series were determined using the C-C method, thereby obtaining the high-dimensional phase space of each dataset. The heat load components were predicted using a bidirectional long short-term memory neural network model with optimized parameters. The final heat load prediction value was obtained by summing the prediction results. The case study results showed that the proposed method achieved good prediction performance compared to other models.

Key words: mode decomposition, multivariate phase space reconstruction, heat load prediction, bidirectional long short-term memory neural network, integrated energy systems in parks

中图分类号: